Aller au contenu principal

M2 Internet Of Things

Candidater à la formation
  • Capacité d'accueil
    20
  • Langue(s) d'enseignement
    Français
  • Régime(s) d'inscription
    Formation initiale
Présentation
Objectifs pédagogiques de la formation

Le M2 Internet of Things (IoT) est proposé en formation initiale ou en apprentissage (avec un rythme d'alternance de deux jours à l'université et trois jours en entreprise), au choix.

La formation propose de se spécialiser dans un domaine de pointe qu’est l’Internet des Objets, ou Internet of Things, avec des applications directes dans l'industrie 4.0, la ville intelligente ou encore la e-santé. Cette formation permet de développer des compétences théoriques, analytiques et pratiques dans ce domaine afin de pouvoir intégrer le monde professionnel ou de la recherche.

L’IoT est une composante majeure de la transformation numérique qui révolutionne peu à peu notre quotidien et celui des entreprises. Grâce au potentiel des nouvelles technologies, l’IoT permet de proposer des services dans de nombreux secteurs comme la sécurité des personnes et des biens, l’énergie, la logistique et les transports, la santé, la surveillance, la traçabilité, le bâtiment, l'automatisation des chaînes de production ou encore la production intelligente.

Les objectifs du parcours IoT sont de :

  • bien comprendre les évolutions technologiques de ces dernières années ;
  • maîtriser un ensemble de concepts et de bonnes pratiques, en particulier les nouvelles architectures basées sur les technologies mobiles (telle la 5G), l'Edge Computing, le Cloud, le Big Data, l’Intelligence Artificielle (IA) et la Blockchain ;
  • se préparer aux défis de ce monde hyperconnecté grâce aux enseignements associant théorie et mise en application au travers de travaux dirigés, de travaux pratiques et/ou de mini-projets, mais aussi grâce à un cycle de conférences faisant intervenir des professionnels du domaine et aux stages obligatoires (de minimum un mois en première année et de cinq à six mois la deuxième année).

A la fin de ce parcours, vous aurez acquis les connaissances et les compétences nécessaires pour évoluer dans divers secteurs d’activité aussi variés que concurrentiels, dans un domaine parmi les plus impactant en termes de productivité et de croissance, ouvrant sur des enjeux sociétaux et environnementaux.

Lieu(x) d'enseignement
ORSAY
GIF SUR YVETTE
Pré-requis, profil d’entrée permettant d'intégrer la formation

Etre titulaire d'une première année de Master (ou équivalent) en informatique ou en mathématiques (avec de bonnes bases en programmation et algorithmique).

Compétences
  • Identifier les usages numériques et les impacts de leur évolution dans le domaine de l’IoT

  • Analyser et modéliser du point de vue informatique un problème dans toute son étendue

  • Mettre en relation une catégorie de problèmes avec les algorithmes de résolution adaptés et en évaluer la pertinence

  • Concevoir un modèle d’optimisation répondant à un problème issu du monde de l’IoT

  • Construire une solution pluridisciplinaire

  • Suivre un projet IoT de la détection du problème jusqu'à sa solution

    Prendre en compte les enjeux industriels, économiques et professionnels

Débouchés de la formation

Les taux d'insertion à la suite du Master informatique de l'université Paris-Saclay sont parmi les plus élevés. Face aux nouvelles technologies qui se développent très rapidement et à leur impact sur la société, les entreprises doivent s’adapter et innover pour rester compétitives. Elles ont de plus en plus besoin de cadres, de managers, de leaders de la transformation numérique.

Le parcours IoT permet de s'insérer efficacement dans le monde industriel et de s'adapter aisément aux nouvelles technologies et environnements de développement. Il offre également des opportunités de carrières publiques ou privées dans le domaine de la recherche et de l'innovation.

Les étudiants souhaitant poursuivre en thèse ont la possibilité de la faire soit dans un laboratoire de recherche, soit en R&D/R&I dans des centres de recherche industriels. Le doctorat fait partie intégrante de l'offre de formation de l'université Paris-Saclay et participe pleinement à la formation "à et par la recherche" et à l'insertion professionnelle.

Au terme du parcours IoT, les métiers visés sont notamment Ingénieur d’études et de développement, Ingénieur de recherche et de développement, Développeur, Chef de projet, ou encore Consultant . L'entrepreneuriat est également facilité au travers des enseignements dispensés dans le parcours IoT et grâce aux formations complémentaires proposées à l'université Paris-Saclay.

Programme

Toutes les UEs listées ci-dessous devront être validées au cours du parcours (M1 / M2): il est requis d'acquerir 60 ECTS par niveau, pour un total de 120 ECTS à l'issue des deux années.
Pour valider le parcours-type ANO (M1 & M2), les étudiants devront valider :

* Toutes les UE dont l'intitulé est [ANO]
* [AI] TC1 - Machine Learning
* [AI] TC2 - Optimization
* [QDCS] Calcul Haute Performance
* [DS] Distributed Systems for Massive Data Management

Pour atteindre 120 crédit ECTS, chaque étudiant devra compléter son parcours avec :

* 4 UE Soft skills
* TER-Stage (en M1)
* Stage long (au second semestre du M2)
* Un libre choix de cours d'autres parcours-types pour compléter les 120 crédits ECTS.

Matières ECTS Cours TD TP Cours-TD Cours-TP TD-TP A distance Projet Tutorat
TER Stage 10
Stage long 30
French Language and Culture 2 2 21
French Language and Culture 1 2 30
EIT - Summer School 4
EIT - Innovation and Entrepreneurship Basics 2 3
EIT - Innovation and Entrepreneurship Basics 1 3
EIT - Innovation & Entrepreneurship Study 2 3
EIT - Innovation & Entrepreneurship Study 1 3 21
EIT - Innovation & Entrepreneurship Advanced 2 2.5
EIT - Innovation & Entrepreneurship Advanced 1 2.5 21
EIT - Business Development Lab 2 5
EIT - Business Development Lab 1 4
[SOFT] Soft skills - Transversal Project B 2.5 7 7 7
[SOFT] Soft skills - Transversal Project A 2.5 7 7 7
[SOFT] Soft skills - Summer school 2.5 21
[SOFT] Soft skills - Seminars B 2.5
[SOFT] Soft skills - Seminars (Fairness in Data Science) 2.5 20
[SOFT] Soft skills - 5 Innovation et Entreprenariat avancé 2.5 21
[SOFT] Soft skills - 4 Innovation et Entreprenariat 2.5 21
[SOFT] Soft skills - 3 (Formation à la vie de l'entreprise - Initiation) 2.5 21
[SOFT] Soft skills - 2 (Communication) 2.5 21
[SOFT] Soft skills - 1B (Langue) 2.5 100
[SOFT] Soft skills - 1A (Langue) 2.5 21
[QDCS] Programmation orientée objet 2.5 11 10
[QDCS] Programmation GPU 2.5 12 9
[QDCS] Programmation avancée C++ 2.5 9 0 12
[QDCS] Ordonnancement et systèmes d'exécution 2.5 21
[QDCS] Optimisation stochastique 2.5 21
[QDCS] Modélisation et optimisation des systèmes discrets 2.5 21
[QDCS] Jeux, apprentissage et optimisation des systèmes complexes 2.5 21
[QDCS] Initiation au calcul quantique 2.5 21
[QDCS] Frontières du calcul parallèle et distribué 2.5 21
[QDCS] Calcul Haute Performance 2.5 12 9
[QDCS] Big Data 2.5 12 3 8
[QDCS] Auto-stabilisation 2.5 21
[QDCS] Algorithmique parallèle 2.5 12 6 3
[QDCS] Algorithmes distribués robustes 2.5 21
[QDCS] Algorithmes de la nature 2.5 21
[ISD] Traitement distribué des données. 3 25
[ISD] Traitement automatique des langues 3 25
[ISD] Test et Vérification 3 25
[ISD] Services et applications Web 3 25
[ISD] sécurité 3 25
[ISD] Réseaux sans fil 3 25
[ISD] Réseaux 3 25
[ISD] Représentation des connaissances et visualisation 3 25
[ISD] Rapport d'activité 6 5
[ISD] Projets tuteurés 6 25
[ISD] Projet étude de cas 3 25
[ISD] Programmation système et réseau 3 25
[ISD] Probabilités/Statistiques 3 25
[ISD] Politiques et concepts avancés en sécurité 3 25
[ISD] outils pour la manipulation et l'extraction de données 3 25
[ISD] Optimisation 3 25
[ISD] Modélisation 3 25
[ISD] Modèles Mathématiques 3 25
[ISD] Mémoire 12 8
[ISD] Machine learning/Deep learning 3 25
[ISD] langages Dynamiques 3 25
[ISD] IoT (Internet des objets) 3 25
[ISD] Introduction à l'apprentissage 3 25
[ISD] Extraction et programmation statistique de l'information 3 25
[ISD] Droit informatique 3 25
[ISD] Data Warehouse II 3 25
[ISD] Data Warehouse I 3 25
[ISD] Data Lake 3 25
[ISD] Communication 3 25
[ISD] Cloud Computing 3 25
[ISD] Blockchain 3 25
[ISD] Anglais 3 25
[ISD] Anglais 3 25
[ISD] Algorithmique distribuée 3 25
[ISD] Algorithmique avancée 3 25
[HCI] Virtual Humans : Project 2.5 21
[HCI] Virtual Humans 2.5 21
[HCI] Studio Art Science 2.5 21
[HCI] Serious games : project 2.5
[HCI] Serious games 2.5
[HCI] Programming of Interactive Systems 2 2.5
[HCI] Programming of Interactive Systems 1 2.5
[HCI] Mixed Reality and Tangible Interaction - Project 2.5 21
[HCI] Mixed Reality and Tangible Interaction 2.5 21
[HCI] Interactive Machine Learning : Project 2.5
[HCI] Interactive Machine Learning 2.5
[HCI] Interactive Information Visualization : Project 2.5
[HCI] Interactive Information Visualization 2.5
[HCI] Groupware and Collaborative Work : Project 2.5 21
[HCI] Groupware and Collaborative Work 2.5 21
[HCI] Gestural and Mobile Interaction 2.5
[HCI] Fundamentals of eXtended Reality 2.5
[HCI] Fundamental of situated computing 2.5
[HCI] Fundamental of Human-Computer Interaction 2 2.5
[HCI] Fundamental of Human-Computer Interaction 1 2.5
[HCI] Experimental Design and Analysis 2.5
[HCI] Evaluation of Interactive Systems 2.5
[HCI] Digital fabrication : Project 2.5
[HCI] Digital Fabrication 2.5
[HCI] Design project - Level 2 : Project 2.5 21
[HCI] Design project - Level 2 2.5 21
[HCI] Design project - Level 1 : Project 2.5 21
[HCI] Design project - Level 1 2.5 21
[HCI] Design of Interactive Systems 2.5
[HCI] Creative Design : Project 2.5
[HCI] Creative Design 2.5
[HCI] Career Seminar - Level 2 project 2.5
[HCI] Career Seminar - Level 2 2.5
[HCI] Career Seminar - Level 1 : Project 2.5 21
[HCI] Career Seminar - Level 1 2.5
[HCI] Advanced Programming of Interactive Systems 2 2.5
[HCI] Advanced Programming of Interactive Systems 1 2.5
[HCI] Advanced Immersive Interactions - Project 2.5
[HCI] Advanced Immersive Interactions 2.5 21
[HCI] Advanced Design of Interactive Systems 2.5
[DS] Social and Graph Data Management 2.5 12 9
[DS] Semantic Web and Ontologies 2.5 12 9
[DS] Knowledge Discovery in Graph Data 2.5 12 6 3
[DS] Intelligence Artificielle, Logique et Contraintes : Projet 2.5 10.5 10.5
[DS] Intelligence Artificielle, Logique et Contraintes 2.5 10.5 10.5
[DS] Distributed Systems for Massive Data Management 2.5 12 0 9
[DS] Data Science Project 2.5 3 18
[DS] Bases de données avancées II : Transactions 2.5 9 8 4
[DS] Bases de données avancées I : Optimisation 2.5 9 8 4
[DS] Algorithms for Data Science 2.5 12 9
[ANO] Virtualisation et cloud 2.5
[ANO] Théorie des jeux 2.5 21
[ANO] Tests fonctionnels de protocoles 2.5 21
[ANO] Réseaux sans fil 2.5 21
[ANO] Réseaux mobiles 2.5 21
[ANO] Programmation système et réseaux 2.5 21
[ANO] Programmation MPI 2.5
[ANO] Optimisation multi-objectifs 2.5 21
[ANO] Optimisation discrète non linéaire 2.5 21
[ANO] Optimisation dans les graphes 2.5 21
[ANO] Internet of Things 2.5 21
[ANO] Evaluation de performances 2.5
[ANO] Blockchain 2.5
[AI] TC6: DATACOMP 2 2.5 12 9
[AI] TC5: SIGNAL PROCESSING 2.5 24
[AI] TC4: Probabilistic Generative Models 2.5 16.5 4.5
[AI] TC3: INFORMATION RETRIEVAL 2.5 9 12
[AI] TC2: OPTIMIZATION 2.5 12 4.5 4.5
[AI] TC1: MACHINE LEARNING 2.5 15 6
[AI] TC0 : Introduction to Machine Learning 2.5 15 6
[AI] PRE4: SCIENTIFIC PROGRAMMING 2.5 9 12
[AI] PRE3: DATACOMP 1 2.5 12 9
[AI] PRE2: MATHEMATICS FOR DATA SCIENCE 2.5 12 4.5 4.5
[AI] PRE1: APPLIED STATISTICS 2.5 10.5 10.5
[AI] OPT9: DATA CAMP 2.5 10 15
[AI] OPT8: GAME THEORY 2.5 12 4.5 4.5
[AI] OPT7: ADVANCED OPTIMIZATION 2.5 12 4.5 4.5
[AI] OPT6: LEARNING THEORY AND ADVANCED MACHINE LEARNING 2.5 21
[AI] OPT5 : VOICE RECOGNITION AND AUTOMATIC LANGUAGE PROCESSING 2.5 21
[AI] OPT4: DEEP LEARNING 2.5 10.5 10.5
[AI] OPT3 : REINFORCEMENT LEARNING 2.5 15 6
[AI] OPT2: IMAGE PROCESSING 2.5 21
[AI] OPT14:MULTILINGUAL NATURAL LANGUAGE PROCESSING 2.5 21
[AI] OPT1 : GRAPHICAL MODELS 2.5 15 6
[AI] OPT 13: Theorie de l'information 2.5 10.5 10.5 0 0
[AI] OPT 12: INFORMATION EXTRACTION FROM DOCUMENTS TO INTERFACES 2.5 10.5 10.5
[AI] OPT 11: DEEP LEARNING FOR NLP 2.5 18 3
[AI] OPT 10: IMAGE INDEXING AND UNDERSTANDING 2.5 15 6

Programme

Le SEMESTRE 1 du M2 Internet of Things comprend les Unités d'Enseignement (UE) suivantes, chacune comptant pour 2,5 ECTS :

  • 6 UE disciplinaires obligatoires :
    • Internet des objets
    • Technologies de communication
    • Evaluation de performances
    • Sécurité
    • Optimisation bi-niveau
    • Théorie des jeux
  • 3 UE disciplinaires optionnelles, à choisir dans les différents parcours de la mention informatique (site Orsay), c'est-à-dire en Intelligence Artificielle, en Science des Données, en Interaction Humain-Machine, en Informatique Théorique et/ou en Programmation Parallèle et Distribuée. Pour les étudiants inscrits en apprentissage, les trois UE disciplinaires supplémentaires sont les suivantes :
    • Cloud computing
    • Programmation distribuée
    • Blockchain
  • 3 UE Soft skills. En particulier, sont proposées :
    • Communication
    • Cycle de conférences
    • Innovation et entrepreneuriat

 

Le SEMESTRE 2 du M2 Internet of Things est consacré à un stage de fin d'études (de 5 à 6 mois) pour les étudiants en formation initiale. Pour les étudiants en apprentissage, les ECTS associés au semestre 2 portent sur l'activité en entreprise, évaluée au travers d'une note de travail, d'un mémoire de fin d'études et d'une soutenance.

Modalités de candidatures
Période(s) de candidatures
Du 15/03/2022 au 13/06/2022
Pièces justificatives obligatoires
Pièces justificatives complémentaires
Contact(s)
Responsable(s) de la formation
Steven MARTIN - steven.martin@lri.fr
Dominique QUADRI - dominique.quadri@lri.fr
Secrétariat pédagogique