M1 Parallel and Distributed Computer Science

Candidater à la formation
  • Capacité d'accueil
    15
  • Langue(s) d'enseignement
    Français, Anglais
Présentation
Objectifs pédagogiques de la formation

L'objectif du Master PDCS est de former des professionnel(e)s de l'informatique pour l'industrie et la recherche dans les domaines des systèmes répartis et du calcul parallèle haute performance. Des modules fondamentaux coexistent avec des modules appliqués. Ils permettent aux étudiant(e)s d'acquérir une formation large et complète, comprenant à la fois les bases théoriques et leur mise en œuvre pratique. Ceci leur permet une intégration rapide dans le monde industriel et scientifique tout en développant leurs capacités à s'adapter aux évolutions technologiques probables du domaine réparti et parallèle.

Lieu(x) d'enseignement
ORSAY
GIF SUR YVETTE
Pré-requis, profil d’entrée permettant d'intégrer la formation

Un cursus général en Informatique est souhaitable; cependant, un(e) étudiant(e) ayant suivi une licence scientifique dans un autre domaine (Mathématiques ou Physique), mais avec des connaissances de base en Informatique, peut suivre ce cursus avec profit.

Compétences
  • Comprendre les enjeux des systèmes répartis et parallèle actuels et futurs.

  • Avoir la capacité d'évaluer l'apport des algorithmes répartis et parallèle dans des applications et protocoles réels.

  • Pouvoir concevoir et prouver des algorithmes répartis et parallèles, et analyser formellement leurs complexités (en temps, mémoire, communication, énergie, etc.).

  • Se familiariser avec les paradigmes de programmation parallèle.

  • Appréhender les techniques de programmation C++ avancée afin de concevoir un code concis et efficace.

Profil de sortie des étudiants ayant suivi la formation

Au cours du M1 PDCS, les étudiants vont acquérir de solides connaissances en algorithmique distribuée, en calcul parallèle et en programmation avancée. Cela leur offre un large éventail pour orienter leur M2 par le choix d'unités optionnelles, soit vers l'algorithmique, soit vers la programmation. De plus, les compétences acquises leur permettront plus tard dans leur carrière d'intégrer plus facilement le monde des entreprises et de la recherche.

Débouchés de la formation

Poursuite d’études : Master 2 informatique.

Avec le développement d'Internet et des super-calculateurs, le domaine du Master PDCS est actuellement très porteur. Le Master permet aux étudiants de poursuivre par un doctorat afin de préparer une thèse, en rejoignant un organisme de recherche publique ou privé ou le département R&D d'une grande entreprise. Il offre aussi aux étudiants la possibilité d'intégrer facilement le monde industriel dans des entreprises ayant de gros besoins de calcul ou développant des logiciels de pointe, ainsi que dans les départements R&D de grandes entreprises, ou encore de créer et de participer à des startups dans les domaines du calcul et des applications distribuées .

Collaboration(s)
Laboratoire(s) partenaire(s) de la formation

Laboratoire de recherche en informatique
Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur
Laboratoire Spécification et Vérification
Laboratoire des Signaux et Systèmes.

Programme

Toutes les UEs listées ci-dessous devront être validées au cours du parcours (M1 / M2): il est requis d'acquerir 60 ECTS par niveau, pour un total de 120 ECTS à l'issue des deux années.
Pour valider le parcours-type PDCS (M1 & M2), les étudiants devront valider toutes les UE dont l'intitulé est [PDCS].
À celles-ci s'ajoutent :

* [ISD] Introduction à l'apprentissage
* [ANO] Blockchain
* [ANO] Programmation MPI
* [ANO] Internet of Things

Pour atteindre 120 crédit ECTS, chaque étudiant devra compléter son parcours avec 4 UE dont l'intitulé est Soft skills - xxxx, un TER-Stage (en M1), un stage long (en M2), ainsi qu'un libre choix de cours d'autres parcours-types pour compléter les 120 crédits ECTS.

Matières ECTS Cours TD TP Cours-TD Cours-TP TD-TP A distance Projet Tutorat
TER Stage 10
Stage long 30
French Language and Culture 2 2 21
French Language and Culture 1 2 30
EIT - Summer School 4
EIT - Innovation and Entrepreneurship Basics 2 3
EIT - Innovation and Entrepreneurship Basics 1 3
EIT - Innovation & Entrepreneurship Study 2 3
EIT - Innovation & Entrepreneurship Study 1 3 21
EIT - Innovation & Entrepreneurship Advanced 2 2.5
EIT - Innovation & Entrepreneurship Advanced 1 2.5 21
EIT - Business Development Lab 2 5
EIT - Business Development Lab 1 4
[SOFT] Soft skills - Transversal Project B 2.5 7 7 7
[SOFT] Soft skills - Transversal Project A 2.5 7 7 7
[SOFT] Soft skills - Summer school 2.5 21
[SOFT] Soft skills - Seminars B 2.5
[SOFT] Soft skills - Seminars (Fairness in Data Science) 2.5 20
[SOFT] Soft skills - 5 Innovation et Entreprenariat avancé 2.5 21
[SOFT] Soft skills - 4 Innovation et Entreprenariat 2.5 21
[SOFT] Soft skills - 3 (Formation à la vie de l'entreprise - Initiation) 2.5 21
[SOFT] Soft skills - 2 (Communication) 2.5 21
[SOFT] Soft skills - 1B (Langue) 2.5 100
[SOFT] Soft skills - 1A (Langue) 2.5 21
[PDCS] Programmation orientée objet 2.5 11 10
[PDCS] Programmation GPU 2.5 12 9
[PDCS] Programmation avancée C++ 2.5 9 0 12
[PDCS] Ordonnancement et systèmes d'exécution 2.5 21
[PDCS] Optimisation stochastique 2.5 21
[PDCS] Modélisation et optimisation des systèmes discrets 2.5 21
[PDCS] Jeux, apprentissage et optimisation des systèmes complexes 2.5 21
[PDCS] Initiation au calcul quantique 2.5 21
[PDCS] Frontières du calcul parallèle et distribué 2.5 21
[PDCS] Calcul Haute Performance 2.5 12 9
[PDCS] Big Data 2.5 12 3 8
[PDCS] Auto-stabilisation 2.5 21
[PDCS] Algorithmique parallèle 2.5 12 6 3
[PDCS] Algorithmes distribués robustes 2.5 21
[PDCS] Algorithmes de la nature 2.5 21
[ISD] Traitement distribué des données. 3 25
[ISD] Traitement automatique des langues 3 25
[ISD] Test et Vérification 3 25
[ISD] Services et applications Web 3 25
[ISD] sécurité 3 25
[ISD] Réseaux sans fil 3 25
[ISD] Réseaux 3 25
[ISD] Représentation des connaissances et visualisation 3 25
[ISD] Rapport d'activité 6 5
[ISD] Projets tuteurés 6 25
[ISD] Projet étude de cas 3 25
[ISD] Programmation système et réseau 3 25
[ISD] Probabilités/Statistiques 3 25
[ISD] Politiques et concepts avancés en sécurité 3 25
[ISD] outils pour la manipulation et l'extraction de données 3 25
[ISD] Optimisation 3 25
[ISD] Modélisation 3 25
[ISD] Modèles Mathématiques 3 25
[ISD] Mémoire 12 8
[ISD] Machine learning/Deep learning 3 25
[ISD] langages Dynamiques 3 25
[ISD] IoT (Internet des objets) 3 25
[ISD] Introduction à l'apprentissage 3 25
[ISD] Extraction et programmation statistique de l'information 3 25
[ISD] Droit informatique 3 25
[ISD] Data Warehouse II 3 25
[ISD] Data Warehouse I 3 25
[ISD] Data Lake 3 25
[ISD] Communication 3 25
[ISD] Cloud Computing 3 25
[ISD] Blockchain 3 25
[ISD] Anglais 3 25
[ISD] Anglais 3 25
[ISD] Algorithmique distribuée 3 25
[ISD] Algorithmique avancée 3 25
[HCI] Virtual Humans : Project 2.5 21
[HCI] Virtual Humans 2.5 21
[HCI] Studio Art Science 2.5 21
[HCI] Serious games : project 2.5
[HCI] Serious games 2.5
[HCI] Programming of Interactive Systems 2 2.5
[HCI] Programming of Interactive Systems 1 2.5
[HCI] Mixed Reality and Tangible Interaction - Project 2.5 21
[HCI] Mixed Reality and Tangible Interaction 2.5 21
[HCI] Interactive Machine Learning : Project 2.5
[HCI] Interactive Machine Learning 2.5
[HCI] Interactive Information Visualization : Project 2.5
[HCI] Interactive Information Visualization 2.5
[HCI] Groupware and Collaborative Work : Project 2.5 21
[HCI] Groupware and Collaborative Work 2.5 21
[HCI] Gestural and Mobile Interaction 2.5
[HCI] Fundamentals of eXtended Reality 2.5
[HCI] Fundamental of situated computing 2.5
[HCI] Fundamental of Human-Computer Interaction 2 2.5
[HCI] Fundamental of Human-Computer Interaction 1 2.5
[HCI] Experimental Design and Analysis 2.5
[HCI] Evaluation of Interactive Systems 2.5
[HCI] Digital fabrication : Project 2.5
[HCI] Digital Fabrication 2.5
[HCI] Design project - Level 2 : Project 2.5 21
[HCI] Design project - Level 2 2.5 21
[HCI] Design project - Level 1 : Project 2.5 21
[HCI] Design project - Level 1 2.5 21
[HCI] Design of Interactive Systems 2.5
[HCI] Creative Design : Project 2.5
[HCI] Creative Design 2.5
[HCI] Career Seminar - Level 2 project 2.5
[HCI] Career Seminar - Level 2 2.5
[HCI] Career Seminar - Level 1 : Project 2.5 21
[HCI] Career Seminar - Level 1 2.5
[HCI] Advanced Programming of Interactive Systems 2 2.5
[HCI] Advanced Programming of Interactive Systems 1 2.5
[HCI] Advanced Immersive Interactions - Project 2.5
[HCI] Advanced Immersive Interactions 2.5 21
[HCI] Advanced Design of Interactive Systems 2.5
[DS] Social and Graph Data Management 2.5 12 9
[DS] Semantic Web and Ontologies 2.5 12 9
[DS] Knowledge Discovery in Graph Data 2.5 12 6 3
[DS] Intelligence Artificielle, Logique et Contraintes : Projet 2.5 10.5 10.5
[DS] Intelligence Artificielle, Logique et Contraintes 2.5 10.5 10.5
[DS] Distributed Systems for Massive Data Management 2.5 12 0 9
[DS] Data Science Project 2.5 3 18
[DS] Bases de données avancées II : Transactions 2.5 9 8 4
[DS] Bases de données avancées I : Optimisation 2.5 9 8 4
[DS] Algorithms for Data Science 2.5 12 9
[ANO] Virtualisation et cloud 2.5
[ANO] Théorie des jeux 2.5 21
[ANO] Tests fonctionnels de protocoles 2.5 21
[ANO] Réseaux sans fil 2.5 21
[ANO] Réseaux mobiles 2.5 21
[ANO] Programmation système et réseaux 2.5 21
[ANO] Programmation MPI 2.5
[ANO] Optimisation multi-objectifs 2.5 21
[ANO] Optimisation discrète non linéaire 2.5 21
[ANO] Optimisation dans les graphes 2.5 21
[ANO] Internet of Things 2.5 21
[ANO] Evaluation de performances 2.5
[ANO] Blockchain 2.5
[AI] TC6: DATACOMP 2 2.5 12 9
[AI] TC5: SIGNAL PROCESSING 2.5 24
[AI] TC4: Probabilistic Generative Models 2.5 16.5 4.5
[AI] TC3: INFORMATION RETRIEVAL 2.5 9 12
[AI] TC2: OPTIMIZATION 2.5 12 4.5 4.5
[AI] TC1: MACHINE LEARNING 2.5 15 6
[AI] TC0 : Introduction to Machine Learning 2.5 15 6
[AI] PRE4: SCIENTIFIC PROGRAMMING 2.5 9 12
[AI] PRE3: DATACOMP 1 2.5 12 9
[AI] PRE2: MATHEMATICS FOR DATA SCIENCE 2.5 12 4.5 4.5
[AI] PRE1: APPLIED STATISTICS 2.5 10.5 10.5
[AI] OPT9: DATA CAMP 2.5 10 15
[AI] OPT8: GAME THEORY 2.5 12 4.5 4.5
[AI] OPT7: ADVANCED OPTIMIZATION 2.5 12 4.5 4.5
[AI] OPT6: LEARNING THEORY AND ADVANCED MACHINE LEARNING 2.5 21
[AI] OPT5 : VOICE RECOGNITION AND AUTOMATIC LANGUAGE PROCESSING 2.5 21
[AI] OPT4: DEEP LEARNING 2.5 10.5 10.5
[AI] OPT3 : REINFORCEMENT LEARNING 2.5 15 6
[AI] OPT2: IMAGE PROCESSING 2.5 21
[AI] OPT14:MULTILINGUAL NATURAL LANGUAGE PROCESSING 2.5 21
[AI] OPT1 : GRAPHICAL MODELS 2.5 15 6
[AI] OPT 13: Theorie de l'information 2.5 10.5 10.5 0 0
[AI] OPT 12: INFORMATION EXTRACTION FROM DOCUMENTS TO INTERFACES 2.5 10.5 10.5
[AI] OPT 11: DEEP LEARNING FOR NLP 2.5 18 3
[AI] OPT 10: IMAGE INDEXING AND UNDERSTANDING 2.5 15 6
Modalités de candidatures
Période(s) de candidatures
Du 01/05/2020 au 01/07/2020
Pièces justificatives obligatoires
  • Curriculum Vitae.

  • Fiche de choix complétée à télécharger sur le site de la formation.

  • Lettre de motivation.

  • Tous les relevés de notes des années/semestres validés depuis le BAC à la date de la candidature.

Pièces justificatives complémentaires
  • Dossier VAPP (obligatoire pour toutes les personnes demandant une validation des acquis pour accéder à la formation).

Fiche de choix M1 informatique - site Orsay
Contact(s)
Responsable(s) de la formation
Janna Burman - burman@lri.fr