Nous rencontrons actuellement un problème technique qui ne permet pas l’ouverture pour le moment de la plateforme de candidature en master, Inception. Nos équipes sont mobilisées pour résoudre la situation rapidement. Merci pour votre patience et pour votre compréhension.
Une erreur est survenue. Merci de réessayer ultérieurement
Le mail de partage a bien été envoyé.
M2 Finance quantitative
Master
Mathématiques et applications
Formation initiale
Formation continue
Anglais
Français
Le Master 2 Finance Quantitative de l’Université Paris-Saclay forme des spécialistes en modélisation financière, gestion des risques et valorisation des produits dérivés. Alliant théorie et pratique, il met l’accent sur les méthodes numériques avancées, le machine learning et le deep learning appliqués à la finance. Les étudiants acquièrent les compétences pour devenir des quants performants en finance de marché, gestion d’actifs ou recherche académique.
Le Master 2 Finance Quantitative se déroule sur un an et combine cours théoriques avancés, enseignements appliqués et projets pratiques. Le premier semestre est consacré aux fondamentaux en modélisation, méthodes numériques et machine learning. Le second semestre inclut un stage en entreprise ou en laboratoire de recherche, permettant aux étudiants de mettre en pratique leurs compétences et de préparer leur insertion professionnelle ou une thèse académique.
Savoir formaliser mathématiquement un problème quantitatif issu de la finance de marché.
Objectifs pédagogiques de la formation
Former des ingénieurs spécialisés dans le domaine de la finance de marché, avec une excellente maîtrise des outils mathématiques, probabilités numériques, statistiques (machine learning), et de programmation associés.
Débouchés
Professionnels
Après un Master ou Master + Doctorat : ingénieur (R&D, contrôle, production…)
Après un Master ou Master + Doctorat : chercheur ou enseignant-chercheur
Après un Master ou Master + Doctorat : ingénieur (recherche-développement, contrôle, production…) dans les domaines santé, pharmacie, agroalimentaire, biotechnologies, instruments et réactifs, cosmétique, dépollution et environnement
Après un Master ou Master + Doctorat : ingénieur (recherche et développement, contrôle, production…)
Après un Master : Ingénieur (analyste financier, économiste, statisticien)
Après un Master : Data scientist
Après un Master : Spécialiste en intelligence artificielle (IA)
Après un master : Chargé(e) d’études
ingénieur étude conception
Ingénieur d'études industrie / recherche publique
Ingénieur.e recherche & développement
Enseignant.es dans le secondaire
Tarifs et bourses
Les montants peuvent varier selon les formations et votre situation.
Document justificatif des candidats exilés ayant un statut de réfugié, protection subsidiaire ou protection temporaire en France ou à l’étranger (facultatif mais recommandé, un seul document à fournir) :
- Carte de séjour mention réfugié du pays du premier asile
- OU récépissé mention réfugié du pays du premier asile
- OU document du Haut Commissariat des Nations unies pour les réfugiés reconnaissant le statut de réfugié
- OU récépissé mention réfugié délivré en France
- OU carte de séjour avec mention réfugié délivré en France
- OU document faisant état du statut de bénéficiaire de la protection subsidiaire en France ou à l’étranger.
Course of Finance of the 1st semester, Stochastic calculus, numerical finance
FX : Course of Finance of the 1st semester
VOLATILITY : Stochastic calculus, mathematical finance, and numerical finance at MSc level.
STRUCTURED PRODUCTS: Course of Finance of the 1st semester
Programme / plan / contenus
INTEREST RATES:
basic principles of rate curve modelling; methods used in active bond management and «Bond Picking»; understanding of structured rate products; pricing of options in a rate model in the form of a concrete case
FX:
The goal of this lesson is to present the main characteristics of foreign exchange derivative products and their use, as part of managing currency risks for companies.
VOLATILITY:
A growing body of empirical research indicates that volatility fluctuates more rapidly than Brownian motion. Fractional volatility models have emerged as compelling alternatives. Even though tractability can be a challenge for these non-Markovian, non-semimartingales models, recent studies have developed numerical methods suitable for their implementation.
STRUCTURED PRODUCTS:
The objective of the course is to give an all-around comprehensive general knowledge and understanding of the theory and the day-to-day use of options for trading, hedging and arbitrage purposes.
Objectifs d'apprentissage
To give an advanced overview in derivative instruments, including in interest rates, FX, volatility modelling and structured products.
Organisation générale et modalités pédagogiques
44 hours of lectures and 6 hours of tutoring.
Bibliographie
INTEREST RATES:
L. Martellini, P. Priaulet et S. Priaulet, «Fixed-Income Securities: Valuation, Risk Management and Portfolio Strategies», Wiley, 2003 J. Hull, «Options, Futures and Other Derivatives», Prentice Hall, 9ème Edition, 2017
Systèmes de particules, jeux à champs moyen et application en machine learning et en finance
Semestre calendaire :
Semestre 2
Détail du volume horaire :
Cours magistraux :21
Travaux dirigés :21
Langue d'enseignement
Anglais
Enseignement à distance
non
Prérequis
Calculus and probability at a good M1 level. Some knowledge of continuous-time processes at the level of the first semester course “stochastic calculus” is a plus but not mandatory.
Programme / plan / contenus
Particle systems
Propagation of chaos
Mckean type diffusions
Mean field games
Applications to machine learning and finance
Objectifs d'apprentissage
The aim of this course is to provide students with a comprehensive understanding of particle systems, McKean type diffusion, mean field games and their applications to machine learning and finance
Organisation générale et modalités pédagogiques
Course ensured by Prof. Zhenjie REN
Bibliographie
Carmona and Delarue. Probabilistic Theory of Mean Field Games with Applications I and II (2018)
CORPORATE FINANCE AND INSURANCE MODELING: Probability, Stochastic calculus
Programme / plan / contenus
STOCHASTIC CONTROL:
I Formulation of control problem
Optimal stopping
Switching regime and impulse control
Regular and singular control
II Probabilistic methods
1.Duality methods
2.Optimal stopping with infinite maturity
3.Early exercise premium
4.Optimal dividend distribution
III Dynamic programming and Hamilton-Jacobi-Bellman equation
1.Dynamic programming
2.HJB equation and verification theorem
3.Viscosity solutions
IV Backward Stochastic Differential Equations
1.Solutions of BSDE
2.Quadratic BSDE and Examples
CORPORATE FINANCE AND INSURANCE MODELING:
I Corporate Finance
Model of firm value
Balance sheet and fundings problems
Structural models of bankruptcy
II Investment strategies
Optimal investment strategies
Investment, dividends and liquidity
III Capital structure
Modeling liabilities : equity and debts
Issuing capital and bankruptcy
IV Models for insurance
Ruin theory
Dividends strategy under ruin constraints
Objectifs d'apprentissage
Formulation of control problem; Dynamic programming and Hamilton-Jacobi-Bellman equation; Corporate finance and insurance modeling
Organisation générale et modalités pédagogiques
21 hours of lecture in Stochastic Control
21 hours of lecture in stochastic modelling
Modalités pédagogiques particulières
Ce cours est pris en charge par l'UEVE à hauteur de 31,5 HETD et le reste par l'ENSIIE).
Bibliographie
STOCHASTIC CONTROL:
“Stochastic control and optimization with financial applications” H. Pham, Springer 2009
“Optimal stochastic control, stochastic target problems and backward SDE”, N. Touzi, 2013
CORPORATE FINANCE AND INSURANCE MODELING:
“Principle of corporate finance”, R. Brealey, S. Myers,F. Allen, Mcgraw-Hill, 2013
“Investment under uncertainty”, A.K. Dixit and S. Pindyck, Princeton university press 1994
“Stochastic control in insurance”, H. Schmidli, Springer 2007
First semester courses related to the topic of the project.
Programme / plan / contenus
The cutting edge projects in finance allow groups of four/five students (including a team leader) to deepen a subject under the responsibility of a professional (team mentor). They offer students and professionals the opportunity for mutually beneficial collaboration. The students deploy their technical expertise in an adventure also mobilizing their creativity, team spirit and professionalism. The professional finds a chance to renew his look on his field and benefits from the students' investment.
Objectifs d'apprentissage
Deepen a subject in quantitative finance under the responsibility of a professional
Organisation générale et modalités pédagogiques
The subjects that relate to market finance, insurance finance but also data mining, machine learning, etc. (in line with the master program curriculum) are defined by the professional. The project starts in December and ends at the end of March. Students meet with their professional manager at least 3 times in the meantime. A co-supervision by an academic member of the pedagogical team of the master program ensures the daily follow-up. The project gives rise to the delivery to the company of a commented code as well as a defense (oral presentation) with beamer slides or jupyter notebook at the end of March.
Modalités pédagogiques particulières
UEVE prend en charge 21,5HETD, le reste est pris en charge par l'ENSIIE.
Risk-Based Investing
a. Modern Portfolio Theory
b. Risk Budgeting Approach
c. Smart Beta & Risk-Based Indexation
d. Application to Bond & Credit Portfolios
e. Risk Parity & Portfolio Allocation
Risk Premia Investing
a. The Theory of Risk Premia
b. Skewness Risk Premia versus Market Anomalies
c. Factor Investing in Equities
d. Factor Investing in Corporate Bonds
e. Asset Allocation with Alternative Risk Premia
Advanced Topics
a. ESG Investing
b. Large-scale Optimization & Portfolio Optimization
c. Robo-Advisors
d. Machine Learning, Gaussian Processes, Bayesian Optimization & Trading Model Calibration.
Objectifs d'apprentissage
This course provides advanced techniques in asset management and introduces the concept of sustainable finance.
Organisation générale et modalités pédagogiques
24 hours of lectures
Bibliographie
Roncalli T., Introduction to Risk Parity & Budgeting, Chapman & Hall, 2013. Roncalli, T. (2017), Alternative Risk Premia: What Do We Know?, Chapter 10 of the book Factor Investing: From Traditional to Alternative Risk Premia.
MACHINE LEARNING TECHNIQUES FOR OPTION PRICING, CALIBRATION, AND HEDGING APPLICATIONS: Financial modeling and numerical knowledge and skills, such as provided by the first semester course “Pricing and calibration methods in finance” General “machine learning” and “deep learning” knowledge and skills, such as provided by the eponymous first semester courses.
Programme / plan / contenus
MACHINE LEARNING TECHNIQUES FOR OPTION PRICING, CALIBRATION, AND HEDGING APPLICATIONS:
In recent years, machine learning techniques have emerged as a generic, model-free, financial derivative numerical paradigm. This course module will be devoted to the option pricing, calibration, and hedging applications of machine learning, with a focus on deep neural networks (mainly), and also Gaussian process regression techniques
Objectifs d'apprentissage
Introducing the main relevant applications of very recent machine learning technics in quantitative finance
Organisation générale et modalités pédagogiques
MACHINE LEARNING TECHNIQUES FOR OPTION PRICING, CALIBRATION, AND HEDGING APPLICATIONS: beamer slides course, tutorials in python / tensorflow (local jupyter notebooks, after local installation of the required packages including anaconda and tensorflow, or notebooks executed online on the google collaborative platform).
Bibliographie
Statistical machine learning for quantitative finance
Ludkovski, M. Annu. Rev. Stat. Appl. 10 (2023), 271–295.
Deep hedging Buehler, H.; Gonon, L.; Teichmann, J.; Wood, B.
Quant. Finance 19 (2019), no. 8, 1271–1291.
1 : High-frequency financial data and limit order books I. Lab: Stylized facts on trade data.
2 : High-frequency financial data and limit order books II. Lab: Stylized facts on quote data.
3 : Introduction to point processes I. Lab : Poisson processes.
4 : Introduction to point processes II. Lab : Hawkes processes.
5 : Hawkes processes in finance.
Lab : Hawkes processes and high-frequency transaction data.
6 : Mathematical modeling of limit order books. Lab : Poisson LOB simulation.
7 : An introduction to market impact.
Lab : Empirical market impact of LOB events.
Objectifs d'apprentissage
This course is aimed at students interested in the empirical study, mathematical modeling and numerical simulation of modern financial markets, known as order book markets.
Organisation générale et modalités pédagogiques
Class (10H30), Python practical (10H30).
Bibliographie
Abergel, Frédéric, Anane, Marouane, Chakraborti, Anirban, Jedidi, Aymen, & Muni Toke, Ioane (2016). Limit order books. Cambridge University Press.
Hasbrouck, J. (2007). Empirical market microstructure: The institutions, economics, and econometrics of securities trading. Oxford University Press.
Financial modeling and numerical knowledge and skills, such as provided by the first semester course “Pricing and calibration methods in finance”
Machine learning in finance knowledge and skills, such as provided by the eponymous January module.
Some knowledge of corporate finance is also useful but will be recalled during the course.
Programme / plan / contenus
Since 2008, investment banks compute various X-valuation adjustments (XVAs) to assess counterpart risk and its capital and funding implications. XVAs matter at two different levels. First, trade incremental XVAs are charged to clients as add-ons to deal entry prices. Second, some of the XVA metrics are also accounting entries that affect the result of the bank. More broadly, the advent of these metrics reflects a shift of paradigm in derivative management, from hedging to balance-sheet optimization.First generation XVAs (CVA, DVA, and FVA, where C sits for credit, D for debt, and F for funding) pose the challenge of a proper understanding of the distinction between firm and shareholder valuation for their purpose. Second generation XVAs involve not only conditional expectations (i.e. prices), but also conditional risk measures: value-at-risk, which underlies MVA (margin valuation adjustment) computations, and expected shortfall, which underlies economic capital based KVA.
Objectifs d'apprentissage
The course aims at providing a survey of the XVA universe from the triple angle of finance (wealth transfers), stochastic analysis (enlargement of filtration and backward SDE features), and computations (nested Monte Carlo vs. deep learning regression schemes).
Organisation générale et modalités pédagogiques
Beamer slides course, tutorials in python / tensorflow.
Bibliographie
Related material on https://math.maths.univ-evry.fr/crepey/
Stochastic calculus and Numerical Finance from the first semester
Programme / plan / contenus
Discretization of Brownian EDS: strong error and weak error
Approximation of standard exotic derivatives: barrier options, lookbacks, Asian derivatives
Integration by parts formula and application to the calculation of Greeks
Non-asymptotic concentration bounds in the Monte Carlo algorithm
Objectifs d'apprentissage
These lectures aim at providing the theoretical basis of the fundamental numerical stochastic analysis techniques that are commonly used in a financial environment.
We will focus on strong and weak error for Brownian SDEs, then address the error associated with the pricing of "usual" exotic derivatives: Barrier/Lookback/Asian options.
We will as well present, through the integration by parts formula, some related applications to the computation of the Greeks.
We will eventually focus on non-asymptotic control bounds for the Monte-Carlo algorithm which is a key tool of all the previously described procedures.
Some additional ouvertures can be related to the convergence analysis of stochastic algorithms of Robbins-Monro type (which can be used in the VaR computation or to the approximation of SDEs with rough coefficients).
Organisation générale et modalités pédagogiques
4 séances de cours de 3H et 3 séance de TP de
Bibliographie
G. Pages "Numerical Probability"
Ikeda Watanabe "Stochastic Differential Equations and Diffusion Processes"
In class you will train for the test by revising grammar rules, learning vocabulary and improving your reading and listening skills. Full tests will be regularly organised and corrected.
Organisation générale et modalités pédagogiques
Weekly 3 hour tutorials from January to March Assessment : end of semester practise test in class For further information on the official test, go to https://www.etsglobal.org/Global/Eng.
Bibliographie
Toeic Practice Exams by Lin Lougheed (Barron’s)
Préparation au Nouveau Toeic by Lin Lougheed (Pearson/Longman)
C++ and VBA programming at the level of the “Programming” course, numerical finance at the level of the “Pricing and calibration methods in finance” course.
Programme / plan / contenus
IT project in C++ interfaced in excel/VBA on quantitative finance topics.
Objectifs d'apprentissage
Students will have to work on a programming project in quantitative finance in a team of two.
Organisation générale et modalités pédagogiques
Projects in teams of two students.
Modalités pédagogiques particulières
L'UEVE prend en charge 6,5 HETD, et le reste l'ENSIIE.
Méthodes numériques de pricing et calibration de modèles
Semestre calendaire :
Semestre 1
Détail du volume horaire :
Cours magistraux :42
Langue d'enseignement
Anglais
Enseignement à distance
non
Prérequis
Probabilities at a good master 1 level, discrete and continuous time stochastic processes, Derivative products and contracts in Finance and programming with Python at a good master 1 level.
Programme / plan / contenus
I Stochastic analysis prerequisites.
II Monte Carlo methods and variance reduction techniques.
III Hedging financial options.
IV Advanced computation of Greeks.
V Advanced numerical methods for pricing exotic and path dependent of options .
VI Analysis of discretization schemes for stochastic differential equations.
VII Model calibration techniques.
Objectifs d'apprentissage
The aim of this course is to introduce advanced numerical methods needed for quantitative work in finance. To this avail, the course will provide a detailed study for calibrating models, pricing and hedging financial options.
Organisation générale et modalités pédagogiques
42 hours of lectures
Blackboard course, homework coding with Python
Modalités pédagogiques particulières
L'UEVE prend en charge 31,5 HETD, le reste est à la charge de l'ENSIIE.
Bibliographie
Mainly:
Lamberton, D. and Lapeyre P., Introduction to Stochastic Calculus Applied to Finance. Chapman & Hall, 2nd revised edition, 2007. Hull, J., Options, Futures, and Other Derivative Securities, Prentice-Hall, last edition. Glasserman P., Monte Carlo Methods in Financial Engineering, Springer, 2004. Shreve, S.: Stochastic Calculus for Finance II: Continuous—Time Models, Springer, 2004 or later. Cont R. et P. Tankov, Modelling with Jump Processes, Chapman & Hall, 2003.
probability, linear regression, penalized regression, python
FINANCIAL ECONOMETRICS: probability, stochastic processes, time series
Programme / plan / contenus
The course starts with a quick reminder of the basics of machine learning, mainly focused on introducing the Perceptron and multi-layer Perceptron algorithms. We will then focus on the Multi-layer perceptron, the backpropagation learning algorithm, the different activation functions and their benefits, and the advantages of regularizations. Finally we will present and apply recurrent neural networks as well as convolutional neural networks.
To follow this course, you will need to bring your own computer and have installed the following material:
https://github.com/brajard/nn/blob/master/INSTALL.md
Objectifs d'apprentissage
Deep learning structures have been at the source of the recent data science revolution. In this course we will learn the basic architectures that allow performing deep learning analysis of data both for classification and regression problems
Organisation générale et modalités pédagogiques
Continuous monitoring and presentation of articles
Bibliographie
http://www.deeplearningbook.org/ , by Ian Goodfellow, Yoshua Bengio, and Aaron Courville
The Elements of Statistical Learning, T. Hastié, R. Tibshirani, J. Friedman.
Machine learning, a probabilistic perpective, K.P. Murphy
Pattern recognition and machine learning, C. Bishop
C language,
additional types (boolean, reference),
additional features of functions : default value of arguments and overloading
function arguments of type reference or const reference
namespaces,
exceptions
Programme / plan / contenus
C++:
I) Object model
declaration of a class
definition of a class
definition of methods (inline and outside the class)
this pointer
static members
const method
II) Encapsulation
III) constructor, copy constructor and destructor
IV) overloading operator
internal operator (incremental operators, brackets operators)
external operators (arithmetic operators, stream operators)
V) Friend functions and classes
friend functions
friend classes
VI) Inheritance
single inheritance
multiple inheritance
composition or inheritance ?
VII) Dynamic allocation of memory
new and delete
which methods must be overloaded ?
VIII) Templates
template declaration
template function
template class
template instantiation
In this course, we will study time series models related to financial data. We are specifically interested in estimation problems for these models.
Course program :
Short recap on time series. Basic empirical facts of financial time series.
GARCH models : existence, properties, estimation of parameters (pseudo-likelihood estimator), volatility forecast. VaR computation, pricing with GARCH, connection with the high frequency sampling of a stochastic volatility model.
Duration models and trading time modeling (Autoregressive Conditional Duration models, Lo and MacKinlay model).
Volatility estimation with high frequency data.
Bibliographie
[1] Analysis of Financial Time Series (Anglais) Relié – 10 septembre 2010 de Ruey S. Tsay
[2] Statistics of Financial Markets: An Introduction (2015) by Jürgen Franke (Author), Wolfgang Karl Härdle (Author), Christian Matthias Hafner (Author)
[3] Time Series: Time Series: Theory and Methods (Springer Series in Statistics) (Anglais) Broché – 28 avril 2009 Peter J. Brockwell
[4] Lecture on "The econometrics of high frequency data" by Per Mykland and Lan Zhang, http://tigger.uic.edu/~lanzhang/LaManga022209.pdf
Course M1 Finance or Financial Mathematics or equivalent
Programme / plan / contenus
Hedging interest Rate Risk
-With duration
-Beyond duration
2)Swaps, Forwards and Futures
Description, Different Uses and Pricing
Plain Vanilla Options
Option description, strategies and pricing (CRR & Black Scholes models)
Introduction to Structured Products and Investment Portfolio Strategies.
Objectifs d'apprentissage
he purpose of this lesson is to train students in the key issues of financial markets (arbitrage, hedging, and speculation) and familiarize them with basic financial instruments (interest rate hedging, swaps, forwards and futures, and options).
Modalités pédagogiques particulières
Ce cours est dupliqué en anglais (à l'UEVE, pris en charge par l'UEVE) et en français à l'ENSIIE (pris en charge par l'ENSIIE).
Bibliographie
L. Martellini, P. Priaulet et S. Priaulet, «Fixed-Income Securities: Valuation, Risk Management and Portfolio Strategies», Wiley, 2003.
This course presents theoretical foundations as well as practical application of machine learning models commonly used in regression and supervised classification. Dimension reduction and quantification methods are also studied.
Organisation générale et modalités pédagogiques
12 sessions of 3h30 each divided into lessons or practical work as needed.
Bibliographie
Hastié, T., Tibshirani, R., Friedman, J. Elements of statistical learning. Springer, 2009.
Murphy, K. Machine learning: a probabilistic perspective. MIT press, 2012
he prerequisites are undergraduate probability (Markov chains, discrete time martingales, different convergence notions in probability).
Programme / plan / contenus
We focus on continuous processes through the study of Brownian motion, Itô's formula, Brownian driven Stochastic Differential Equations (SDEs), their correspondence with some appropriate Partial Differential Equations (PDEs). We will also investigate some associated strategies of dynamic/static pricing and hedging of options.
Here are the following key-points of the course.
Preliminary results on Gaussian vectors
Characterizations of Brownian motion (as a Gaussian process or as a process with stationary independent Gaussian increments)
Construction of Brownian motion through the approach of Paul Lévy.
Itô processes and Itô's formula.
SDEs and some associated Parabolic PDEs : the Feynman-Kac representation formula and Applications to finance
The Girsanov theorem.
Objectifs d'apprentissage
The purpose of these lectures is to provide the mathematical background to apprehend a wide class of models appearing in finance.
Organisation générale et modalités pédagogiques
42h of lectures
Bibliographie
Some possible companion books to the lectures are the following :
-Le Gall, J.F., Brownian Motion, Martingales, and Stochastic Calculus. Springer.
-Lamberton, D. and Lapeyre, B. Introduction to Stochastic Calculus Applied to Finance, Second Edition.
Chapman & Hall
-Comets, F. and Meyre, T. Calcul stochastique et modeles de diusions : Cours et exercices corrigés. Dunod.
Some more advanced references are :
-Karatzas, I. and Shreve, S. Brownian Motion and Stochastic calculus. Springer.
-Rogers, L.C.G. and Williams, D. Diffusions, Markov Processes, and Martingales : Volume 1, Foundations. Cambridge University press.
-Rogers, L.C.G. and Williams, D. Diffusions, Markov Processes and Martingales : Volume 2, Itô Calculus.Cambridge University press
-Ikeda, N. and Watanabe, N. Stochastic differential equations and diffusion processes. North Holland.
Course M1 Finance or Financial Mathematics or equivalent
FINANCIAL MARKETS AND ACTUARIAL FINANCE:
None
Programme / plan / contenus
It provides methods regarding how to price traditional insurance products (Life and Death Insurance, Fixed Annuities, etc.) and more advanced insurance products (e.g. CPPI, Variable Annuities). The course also presents some aspects of the Asset and Liability Management of an Insurance company and how to mitigate the risks inherent to insurance business.
Objectifs d'apprentissage
The course is an introduction to the financial aspects of insurance companies
Organisation générale et modalités pédagogiques
This course contains 12 lectures of 3 hours and is mainly taught by a team of professionals from AXA.
Bibliographie
FINANCE OF INSURANCE:
M. FROMENTEAU & P. PETAUTON, Théorie et pratique de l’assurance vie (Dunod)
A. TOSETI et al., Assurance, Comptabilité, Réglementation, Actuariat (Economica)
J. HULL, Options, Futures and Other Derivatives (Pearson)
D. BRIGO & F. MERCURIO, Interest Rate models – Theory and Practice (Springer)