M2 Smart Aerospace and Autonomous Systems

Candidater à la formation
  • Graduate School(s)
    Science de l’ingénierie et des systèmes
  • Capacité d'accueil
  • Langue(s) d'enseignement
  • Regime d'inscription
    Formation initiale
Année dans le diplôme
Master 2
Objectifs pédagogiques de la formation

The important application potential of Autonomous Systems and Smart Aerospace vehicles has helped them to become the new focus of education. The last decade has seen a significant increase in Research in Smart Aerospace and Autonomous Systems. Now, the field is sufficiently mature to engage in a procedure of education. Recently, the application of autonomous systems is finding its way into industries and even into the everyday life of people. One can mention several examples such as robotic helicopters for surveillance, aerial photography or farm spraying, cars that park themselves, robotic vacuum cleaners,... It is becoming more important that our students learn about autonomous systems and our engineers have information resources for designing, analyzing and controlling these systems. Since most of the robotic masters deal only with conventional robots, nowadays, students do not have a chance to learn about autonomous systems and engineers who design autonomous robots have to resort to extracting information from research literature to design them, which is tedious for them. The present master provides the theories and methods that are useful for understanding and designing autonomous systems to students and engineers in a form that is detailed and easy to follow. The purpose of this master is to render the students and engineers familiar with the methods of modeling/ analysis/ control that have been proven efficient through research. Similar to the conventional robotic manipulators, the autonomous systems are multidisciplinary machines and can be studied from different points of view. Autonomous systems can also be studied from the artificial intelligence point of view. Covering all these aspects of autonomous systems in one master is almost impossible and each of these aspects has their own audience. For these reasons, the scope of the present master is the mechanics and control of autonomous systems. The master covers the kinematic and dynamic modeling, analysis of autonomous systems as well as the methods suitable for their control. The key feature of the present master is its content which has never been gathered within one master and has never been presented in a form useful to students and engineers. The present master contains the theoretical tools necessary for analyzing the dynamics and control of autonomous systems in one place. The topics that are practical and are of interest to autonomous robot designers have been picked from advanced robotics research literature. These topics are sorted appropriately and will form the contents of the master.

Lieu(x) d'enseignement
Pré-requis, profil d’entrée permettant d'intégrer la formation
Qualification in aeronautics, Eelectrical engineering, Computer science engineering, Systems engineering or mechanical engineering
  • Identifier et caractériser une problématique de modélisation et de commande d'engins aériens (Maîtrise).

  • Maitriser les enjeux de la communication d'un système complexe aérien.

  • Savoir choisir et analyser un système de perception et localisation multi capteur.

  • Maîtriser les aspects théorique et les mettre en application en individuel ou en groupe.

Débouchés de la formation

This Master is designed to promote a high quality educational offer in the domain of autonomous systems and robotics systems. After graduation, the students will master competences of different areas of this multidisciplinary area: electrical engineering, computer and science engineering, mechanical and science engineering and general training. Students, after passing their master, will have the following skills:

Scientific and technical knowledge of autonomy engineering and the skills to use this knowledge effectively
Capacity to develop and design innovative autonomous systems
Capacity to work both independently and in multidisciplinary teams, to communicate by written and oral presentations, in an international context
Capacity to transfer high techniques methodology from university to industry
Competency to manage an engineering team
Ability to understand different European cultures and languages.

Potential jobs are :
* Drone Development for fire and rescue (forest fires, emergency rescue…),
* Energy sector (oil and gas industry distribution infrastructure, electricity grids/distribution network monitoring),
* Agriculture – forestry - fisheries (environmental monitoring, crop dusting, fisheries protection…),
* Earth observation – remote sensing (climate monitoring, aerial photography, seismic events, pollution monitoring …),
*Autonomous vehicles
* Embedded systems
* Communication – broadcasting,

Laboratoire(s) partenaire(s) de la formation

Informatique, Biologie Intégrative & Systèmes Complexes
Laboratoire de Mécanique et d'Energétique d'Evry.

Poznan University of Technology.

Modalités de candidatures
Période(s) de candidatures
Du 01/02/2020 au 15/07/2020
Du 15/08/2020 au 01/09/2020
Pièces justificatives obligatoires
  • Curriculum Vitae.

  • Lettre de motivation.

  • Tous les relevés de notes des années/semestres validés depuis le BAC à la date de la candidature.

Pièces justificatives complémentaires
  • Fiche de choix de M2 (obligatoire pour les candidats inscrits en M1 à l'Université Paris-Saclay) à télécharger sur https://www.universite-paris-saclay.fr/fr/etre-candidat-a-nos-formations.

  • Dossier VAPP (obligatoire pour toutes les personnes demandant une validation des acquis pour accéder à la formation).

  • Classement Année Précedente et taille promotion.

  • Curriculum UE (descriptifs des UE suivies) des deux dernières années.

  • Attestation de niveau d'anglais (obligatoire pour les non anglophones).

Responsable(s) de la formation
Secrétariat pédagogique