M2 Advanced Networks & Optimization

Apply for the degree
  • Places available
    20
  • Language(s) of instruction
    French
Présentation
Objectives

The Networks and Optimisation course focuses on the topics of networks and optimisation and addresses network optimisation. This course aims to provide expertise in the concepts and tools relating to networks and optimisation in the broadest sense of the term, as well as related IT techniques. It focuses on aspects of modelling, fundamental results, methods and algorithms, as well as their suitability for insertion in networked systems.  
In this sense, this course aims to provide future professionals with solid scientific and technological knowledge which is focused on system optimisation in order to study and design innovative complex systems for networks through a multidisciplinary approach (learning method, game theory, mathematical programming (deterministic, robust, stochastic)) with a focus on optimisation in particular.
The knowledge and skills which are expected to be attained by the end of the course are:
- Good knowledge of networks
- Good knowledge of modelling a real problem from the world of networks, concepts, algorithms and optimisation software
- An ability to develop a research problem and design a solution
- Ability to incorporate network optimisation methods and tools within a company

Location
ORSAY
GIF SUR YVETTE
PALAISEAU
Course Prerequisites

Une formation antérieure (M1 ou équivalent) apportant les notions de base en réseaux, algèbre linéaire, optimisation combinatoire et programmation.

Skills
  • Détecter un problème d'optimisation face à un problème issu du monde des réseaux.

  • Concevoir un modèle d'optimisation répondant à un problème issu du monde des réseaux.

  • Construire une solution pluridisciplinaire adaptée au problème issus du monde des réseaux.

  • Mener un projet de la détection du problème jusqu'à sa solution en milieu industriel.

Post-graduate profile

Les étudiant.e.s auront une bonne connaissance des réseaux, de la modélisation d'un problème réel issu du monde des réseaux, des concepts, algorithmes et logiciel d'optimisation, une capacité à développer une problématique de recherche et à concevoir une solution
mais également une capacité à insérer les méthodes et outils d'optimisation pour les réseaux au sein d'une entreprise.
Ils ou elles auront un profil chef de projet.

Career prospects

La formation permettra de s'insérer efficacement dans le monde industriel et de s'adapter aisément aux nouvelles technologies et environnements de développement. Elle ouvrira également des opportunités de carrières publiques ou privées dans le domaine de la recherche et de l'innovation. Les étudiants souhaitant faire une thèse auront la possibilité de la faire soit dans un laboratoire de recherche, soit en R&D/R&I dans des centres de recherche industriels.

Entreprises possibles : Orange, EDF, Thalès, Renault, Air France, Société Générale, RATP, SNCF, Eurodecision, ARTELYS

Collaboration(s)
Laboratories

Laboratoire de recherche en informatique
Laboratoire d’informatique Parallélisme Réseaux Algorithmes Distribués.

Programme

Toutes les UEs listées ci-dessous devront être validées au cours du parcours (M1 / M2): il est requis d'acquerir 60 ECTS par niveau, pour un total de 120 ECTS à l'issue des deux années.
Pour valider le parcours-type ANO (M1 & M2), les étudiants devront valider :

* Toutes les UE dont l'intitulé est [ANO]
* [AI] TC1 - Machine Learning
* [AI] TC2 - Optimization
* [PDCS] Calcul Haute Performance
* [DS] Distributed Systems for Massive Data Management

Pour atteindre 120 crédit ECTS, chaque étudiant devra compléter son parcours avec :

* 4 UE Soft skills
* TER-Stage (en M1)
* Stage long (au second semestre du M2)
* Un libre choix de cours d'autres parcours-types pour compléter les 120 crédits ECTS.

Matières ECTS Cours TD TP Cours-TD Cours-TP TD-TP A distance Projet Tutorat
TER Stage 10
Stage long 30
French Language and Culture 2 2 21
French Language and Culture 1 2 30
EIT - Summer School 4
EIT - Innovation and Entrepreneurship Basics 2 3
EIT - Innovation and Entrepreneurship Basics 1 3
EIT - Innovation & Entrepreneurship Study 2 3
EIT - Innovation & Entrepreneurship Study 1 3 21
EIT - Innovation & Entrepreneurship Advanced 2 2.5
EIT - Innovation & Entrepreneurship Advanced 1 2.5 21
EIT - Business Development Lab 2 5
EIT - Business Development Lab 1 4
[SOFT] Soft skills - Transversal Project B 2.5 7 7 7
[SOFT] Soft skills - Transversal Project A 2.5 7 7 7
[SOFT] Soft skills - Summer school 2.5 21
[SOFT] Soft skills - Seminars B 2.5
[SOFT] Soft skills - Seminars (Fairness in Data Science) 2.5 20
[SOFT] Soft skills - 5 Innovation et Entreprenariat avancé 2.5 21
[SOFT] Soft skills - 4 Innovation et Entreprenariat 2.5 21
[SOFT] Soft skills - 3 (Formation à la vie de l'entreprise - Initiation) 2.5 21
[SOFT] Soft skills - 2 (Communication) 2.5 21
[SOFT] Soft skills - 1B (Langue) 2.5 100
[SOFT] Soft skills - 1A (Langue) 2.5 21
[PDCS] Programmation orientée objet 2.5 11 10
[PDCS] Programmation GPU 2.5 12 9
[PDCS] Programmation avancée C++ 2.5 9 0 12
[PDCS] Ordonnancement et systèmes d'exécution 2.5 21
[PDCS] Optimisation stochastique 2.5 21
[PDCS] Modélisation et optimisation des systèmes discrets 2.5 21
[PDCS] Jeux, apprentissage et optimisation des systèmes complexes 2.5 21
[PDCS] Initiation au calcul quantique 2.5 21
[PDCS] Frontières du calcul parallèle et distribué 2.5 21
[PDCS] Calcul Haute Performance 2.5 12 9
[PDCS] Big Data 2.5 12 3 8
[PDCS] Auto-stabilisation 2.5 21
[PDCS] Algorithmique parallèle 2.5 12 6 3
[PDCS] Algorithmes distribués robustes 2.5 21
[PDCS] Algorithmes de la nature 2.5 21
[ISD] Traitement distribué des données. 3 25
[ISD] Traitement automatique des langues 3 25
[ISD] Test et Vérification 3 25
[ISD] Services et applications Web 3 25
[ISD] sécurité 3 25
[ISD] Réseaux sans fil 3 25
[ISD] Réseaux 3 25
[ISD] Représentation des connaissances et visualisation 3 25
[ISD] Rapport d'activité 6 5
[ISD] Projets tuteurés 6 25
[ISD] Projet étude de cas 3 25
[ISD] Programmation système et réseau 3 25
[ISD] Probabilités/Statistiques 3 25
[ISD] Politiques et concepts avancés en sécurité 3 25
[ISD] outils pour la manipulation et l'extraction de données 3 25
[ISD] Optimisation 3 25
[ISD] Modélisation 3 25
[ISD] Modèles Mathématiques 3 25
[ISD] Mémoire 12 8
[ISD] Machine learning/Deep learning 3 25
[ISD] langages Dynamiques 3 25
[ISD] IoT (Internet des objets) 3 25
[ISD] Introduction à l'apprentissage 3 25
[ISD] Extraction et programmation statistique de l'information 3 25
[ISD] Droit informatique 3 25
[ISD] Data Warehouse II 3 25
[ISD] Data Warehouse I 3 25
[ISD] Data Lake 3 25
[ISD] Communication 3 25
[ISD] Cloud Computing 3 25
[ISD] Blockchain 3 25
[ISD] Anglais 3 25
[ISD] Anglais 3 25
[ISD] Algorithmique distribuée 3 25
[ISD] Algorithmique avancée 3 25
[HCI] Virtual Humans : Project 2.5 21
[HCI] Virtual Humans 2.5 21
[HCI] Studio Art Science 2.5 21
[HCI] Serious games : project 2.5
[HCI] Serious games 2.5
[HCI] Programming of Interactive Systems 2 2.5
[HCI] Programming of Interactive Systems 1 2.5
[HCI] Mixed Reality and Tangible Interaction - Project 2.5 21
[HCI] Mixed Reality and Tangible Interaction 2.5 21
[HCI] Interactive Machine Learning : Project 2.5
[HCI] Interactive Machine Learning 2.5
[HCI] Interactive Information Visualization : Project 2.5
[HCI] Interactive Information Visualization 2.5
[HCI] Groupware and Collaborative Work : Project 2.5 21
[HCI] Groupware and Collaborative Work 2.5 21
[HCI] Gestural and Mobile Interaction 2.5
[HCI] Fundamentals of eXtended Reality 2.5
[HCI] Fundamental of situated computing 2.5
[HCI] Fundamental of Human-Computer Interaction 2 2.5
[HCI] Fundamental of Human-Computer Interaction 1 2.5
[HCI] Experimental Design and Analysis 2.5
[HCI] Evaluation of Interactive Systems 2.5
[HCI] Digital fabrication : Project 2.5
[HCI] Digital Fabrication 2.5
[HCI] Design project - Level 2 : Project 2.5 21
[HCI] Design project - Level 2 2.5 21
[HCI] Design project - Level 1 : Project 2.5 21
[HCI] Design project - Level 1 2.5 21
[HCI] Design of Interactive Systems 2.5
[HCI] Creative Design : Project 2.5
[HCI] Creative Design 2.5
[HCI] Career Seminar - Level 2 project 2.5
[HCI] Career Seminar - Level 2 2.5
[HCI] Career Seminar - Level 1 : Project 2.5 21
[HCI] Career Seminar - Level 1 2.5
[HCI] Advanced Programming of Interactive Systems 2 2.5
[HCI] Advanced Programming of Interactive Systems 1 2.5
[HCI] Advanced Immersive Interactions - Project 2.5
[HCI] Advanced Immersive Interactions 2.5 21
[HCI] Advanced Design of Interactive Systems 2.5
[DS] Social and Graph Data Management 2.5 12 9
[DS] Semantic Web and Ontologies 2.5 12 9
[DS] Knowledge Discovery in Graph Data 2.5 12 6 3
[DS] Intelligence Artificielle, Logique et Contraintes : Projet 2.5 10.5 10.5
[DS] Intelligence Artificielle, Logique et Contraintes 2.5 10.5 10.5
[DS] Distributed Systems for Massive Data Management 2.5 12 0 9
[DS] Data Science Project 2.5 3 18
[DS] Bases de données avancées II : Transactions 2.5 9 8 4
[DS] Bases de données avancées I : Optimisation 2.5 9 8 4
[DS] Algorithms for Data Science 2.5 12 9
[ANO] Virtualisation et cloud 2.5
[ANO] Théorie des jeux 2.5 21
[ANO] Tests fonctionnels de protocoles 2.5 21
[ANO] Réseaux sans fil 2.5 21
[ANO] Réseaux mobiles 2.5 21
[ANO] Programmation système et réseaux 2.5 21
[ANO] Programmation MPI 2.5
[ANO] Optimisation multi-objectifs 2.5 21
[ANO] Optimisation discrète non linéaire 2.5 21
[ANO] Optimisation dans les graphes 2.5 21
[ANO] Internet of Things 2.5 21
[ANO] Evaluation de performances 2.5
[ANO] Blockchain 2.5
[AI] TC6: DATACOMP 2 2.5 12 9
[AI] TC5: SIGNAL PROCESSING 2.5 24
[AI] TC4: Probabilistic Generative Models 2.5 16.5 4.5
[AI] TC3: INFORMATION RETRIEVAL 2.5 9 12
[AI] TC2: OPTIMIZATION 2.5 12 4.5 4.5
[AI] TC1: MACHINE LEARNING 2.5 15 6
[AI] TC0 : Introduction to Machine Learning 2.5 15 6
[AI] PRE4: SCIENTIFIC PROGRAMMING 2.5 9 12
[AI] PRE3: DATACOMP 1 2.5 12 9
[AI] PRE2: MATHEMATICS FOR DATA SCIENCE 2.5 12 4.5 4.5
[AI] PRE1: APPLIED STATISTICS 2.5 10.5 10.5
[AI] OPT9: DATA CAMP 2.5 10 15
[AI] OPT8: GAME THEORY 2.5 12 4.5 4.5
[AI] OPT7: ADVANCED OPTIMIZATION 2.5 12 4.5 4.5
[AI] OPT6: LEARNING THEORY AND ADVANCED MACHINE LEARNING 2.5 21
[AI] OPT5 : VOICE RECOGNITION AND AUTOMATIC LANGUAGE PROCESSING 2.5 21
[AI] OPT4: DEEP LEARNING 2.5 10.5 10.5
[AI] OPT3 : REINFORCEMENT LEARNING 2.5 15 6
[AI] OPT2: IMAGE PROCESSING 2.5 21
[AI] OPT14:MULTILINGUAL NATURAL LANGUAGE PROCESSING 2.5 21
[AI] OPT1 : GRAPHICAL MODELS 2.5 15 6
[AI] OPT 13: Theorie de l'information 2.5 10.5 10.5 0 0
[AI] OPT 12: INFORMATION EXTRACTION FROM DOCUMENTS TO INTERFACES 2.5 10.5 10.5
[AI] OPT 11: DEEP LEARNING FOR NLP 2.5 18 3
[AI] OPT 10: IMAGE INDEXING AND UNDERSTANDING 2.5 15 6
Modalités de candidatures
Application period
From 01/05/2020 to 01/07/2020
Compulsory supporting documents
  • All transcripts of the years / semesters validated since the high school diploma at the date of application.

  • Curriculum Vitae.

  • Motivation letter.

  • Curriculum EU (description of the units of education followed) of the last two years.

  • Sheet of choice of platform completed to download on the site.

Additional supporting documents
Contact(s)
Course manager(s)
Dominique QUADRI - dominique.quadri@lri.fr
Steven MARTIN - steven.martin@lri.fr