M2 Quantitative Finance

Master's degree
Mathématiques et applications
Full-time academic programmes
Life-long learning
English
French

The Master’s in Quantitative Finance at Université Paris-Saclay trains specialists in financial modeling, risk management, and derivatives valuation. Combining theory and practice, the program emphasizes advanced numerical methods, as well as machine learning and deep learning applied to finance. Students acquire the skills to become quants, prepared for careers in financial markets, asset management, or academic research.

The Master’s in Quantitative Finance is a one-year program combining advanced theoretical courses, applied teaching, and practical projects. The first semester focuses on core topics in modeling, numerical methods, and machine learning. The second semester is dedicated to an internship in industry or a research lab, enabling students to apply their skills and prepare for careers in quantitative finance or for pursuing a PhD.

Information

Présentation

Objectives

M2QF  brings to high level scientific students an invaluable expertise in the field of quantitative finance, considered from the points of view of mathematics (probability and statistics, computational methods) and data science. Job opportunities after the master program: quantitative analyst, risk manager, IT quant, insurance, data scientist for finance, PhD thesis in quantitative finance,...

Career Opportunities

Career prospects

Après un Master ou Master + Doctorat : ingénieur (R&D, contrôle, production…)
Après un Master ou Master + Doctorat : chercheur ou enseignant-chercheur
Après un Master ou Master + Doctorat : ingénieur (recherche-développement, contrôle, production…) dans les domaines santé, pharmacie, agroalimentaire, biotechnologies, instruments et réactifs, cosmétique, dépollution et environnement
Après un Master ou Master + Doctorat : ingénieur (recherche et développement, contrôle, production…)
Après un Master : Ingénieur (analyste financier, économiste, statisticien)
Après un Master : Data scientist
Après un Master : Spécialiste en intelligence artificielle (IA)
Après un master : Chargé(e) d’études
ingénieur étude conception
Ingénieur d'études industrie / recherche publique
Ingénieur.e recherche & développement
Enseignant.es dans le secondaire

Fees and scholarships

The amounts may vary depending on the programme and your personal circumstances.

Admission

Capacity

Available Places

30

Target Audience and Entry Requirements

Good M1-level (or equivalent) competence in probability and statistics, market finance, programming (in C, Python)

Application Period(s)

Inception Platform

From 30/01/2026 to 30/06/2026

Supporting documents

Compulsory supporting documents

Motivation letter.

All transcripts of the years / semesters validated since the high school diploma at the date of application.

Curriculum Vitae.

Additional supporting documents

Certificate of English level.

VAP file (obligatory for all persons requesting a valuation of the assets to enter the diploma).

Supporting documents :
- Residence permit stating the country of residence of the first country
- Or receipt of request stating the country of first asylum
- Or document from the UNHCR granting refugee status
- Or receipt of refugee status request delivered in France
- Or residence permit stating the refugee status delivered in France
- Or document stating subsidiary protection in France or abroad
- Or document stating temporary protection in France or abroad.

Programme
Subjects ECTS Semestre Lecture directed study practical class Lecture/directed study Lecture/practical class directed study/practical class distance-learning course Project Supervised studies
Produits dérivés Semestre 2 44 6
Systèmes de particules, jeux à champs moyen et application en machine learning et en finance Semestre 2 21 21
Contrôle et modélisation stochastique en finance et en assurance Semestre 2 42
Cutting edge finance Semestre 2 64
FINANCE DURABLE ET ASSET MANAGEMENT Semestre 2 24
Techniques de machine learning en finance Semestre 2 21
Données Haute Fréquence et carnets d'ordre Semestre 2 24
XVAs et régulations Semestre 2 24
Approximations de processus Semestre 2 21
Subjects ECTS Semestre Lecture directed study practical class Lecture/directed study Lecture/practical class directed study/practical class distance-learning course Project Supervised studies
Stage professionnel Semestre 2
Préparation au TOEIC Semestre 2 25
Subjects ECTS Semestre Lecture directed study practical class Lecture/directed study Lecture/practical class directed study/practical class distance-learning course Project Supervised studies
Projet informatique Semestre 1 2 10
Méthodes numériques de pricing et calibration de modèles Semestre 1 42
Subjects ECTS Semestre Lecture directed study practical class Lecture/directed study Lecture/practical class directed study/practical class distance-learning course Project Supervised studies
Deep learning Semestre 1 21
Programmation informatique Semestre 1 18 24
Econométrie financière Semestre 1 18
Marchés financiers et finance actuarielle Semestre 1 14 6.5
Machine learning Semestre 1 21 21
Calcul Stochastique Semestre 1 21 21
Finance de l'assurance Semestre 1 36
Gestion des risques Semestre 1 36 15

Teaching Location(s)

EVRY

Contact

Programme Comparator

View and compare your programmes to identify the best options

0/3
Formations