M2 Mathematics, Vision, Learning

Master's degree
Mathématiques et applications
Full-time academic programmes
English
French

Information

Présentation

Objectives

The Master 2 MVA (Mathematics, Vision, Learning), created by the mathematics department of the ENS Paris-Saclay, is a unique master in France since its creation in 1996. In cooperation with several academic partners, it trains a large number of university and "grandes ecoles" students each year in Research, Development and Innovation for public and private organizations and companies in the field of mathematics applied to data, image and signal processing.The huge growth in the use of digital data in all fields of science, technology and society requires the training of high-level mathematical researchers mastering the acquisition and processing of digital data on the one hand, and their automatic interpretation on the other. These two aspects are strictly complementary and are reflected in the three terms characterizing the MVA program.

Career Opportunities

Career prospects

Après un Master ou Master + Doctorat : ingénieur (R&D, contrôle, production…)
Après un Master ou Master + Doctorat : chercheur ou enseignant-chercheur
Après un Master ou Master + Doctorat : ingénieur (recherche-développement, contrôle, production…) dans les domaines santé, pharmacie, agroalimentaire, biotechnologies, instruments et réactifs, cosmétique, dépollution et environnement
Après un Master ou Master + Doctorat : ingénieur (recherche et développement, contrôle, production…)
Après un Master : Ingénieur (analyste financier, économiste, statisticien)
Après un Master : Data scientist
Après un Master : Spécialiste en intelligence artificielle (IA)
Après un master : Chargé(e) d’études
ingénieur étude conception
Ingénieur d'études industrie / recherche publique
Ingénieur.e recherche & développement
Enseignant.es dans le secondaire

Fees and scholarships

The amounts may vary depending on the programme and your personal circumstances.

Admission

Capacity

Available Places

180

Target Audience and Entry Requirements

Admission: On a case-by-case basis, for holders of an M1 in mathematics, informatics or physics, or for 3rd-year engineering school students (potentially admitted for dual programmes, according to agreements).

Application Period(s)

Inception Platform

From 01/05/2026 to 30/06/2026

Supporting documents

Compulsory supporting documents

Copy of the last diploma.

Copy of identity document.

Motivation letter.

All transcripts of the years / semesters validated since the high school diploma at the date of application.

Curriculum Vitae.

Certificate of English level (compulsory for non-English speakers) or GMAT / GRE test results.

Detailed description and hourly volume of courses taken since the beginning of the university program.

Additional supporting documents

Letter of recommendation or internship evaluation.

Certificate of English level (compulsory for non-English speakers).

VAP file (obligatory for all persons requesting a valuation of the assets to enter the diploma).

Document indicating the list of local M2 choices available here : https://urlz.fr/i3Lo.

Supporting documents :
- Residence permit stating the country of residence of the first country
- Or receipt of request stating the country of first asylum
- Or document from the UNHCR granting refugee status
- Or receipt of refugee status request delivered in France
- Or residence permit stating the refugee status delivered in France
- Or document stating subsidiary protection in France or abroad
- Or document stating temporary protection in France or abroad.

Programme
Subjects ECTS Semestre Lecture directed study practical class Lecture/directed study Lecture/practical class directed study/practical class distance-learning course Project Supervised studies
Deep Learning Semestre 1 24
Fondements Théoriques du deep learning Semestre 1 25 5
Audio Signal Processing - Time-Frequency Analysis Semestre 2 21
Graphical models : Discrete inference and learning Semestre 2 24
Modèles déformables et méthodes geodesiques Semestre 2 21 9
Deep Learning in Practice Semestre 2 12 12
Nuages de points et modélisation 3D Semestre 2 16 16
Optimal transport for machine learning Semestre 1 18
Algorithms and learning for protein science Semestre 2 18 3
Algorithms for speech and natural language processing Semestre 2 21
Apprentissage pour les séries temporelles Semestre 1 27 0 9
Séminaire Turing - Sûreté et interprétabilité des IA à usage général Semestre 1 12
Bayesian machine learning Semestre 2 16 12
Geometry processing and geometric deep learning Semestre 1 12 14
Audio signal Analysis, Indexing and Transformations Semestre 2 14 10
Apprentissage Profond pour la Restauration et la Synthese d'Images Semestre 2 24 12
3D Computer Vision Semestre 1 18 3
Interactions (Complexity, Stochasticity, Extrema & Rare events) Semestre 1 24
Biostatistics Semestre 2 24 3
Problèmes inverses et imagerie : approches statistiques et stochastiques Semestre 2 27
Responsible machine learning Semestre 1 10
Geometric Data analysis Semestre 1 14 7
Fondamentaux de la recherche reproductible et du logiciel libre Semestre 1 12 3 9
Statistical learning with extreme values Semestre 1 15 6 4
Apprentissage profond et traitement du signal, introduction et applications industrielles Semestre 1 12 18
The machine intelligence of images Semestre 1 12 18
Introduction à l'apprentissage statistique pour les géosciences Semestre 2 12 18
Algorithmes pour l'optimisation et la gestion des réseaux Semestre 2 12 18
Stopping times and online algorithms Semestre 1 24
Immersion en hôpital - collaboration en binôme avec un médecin Semestre 1
Robotics Semestre 1 19 9
Regulating AI Semestre 2 12
Modèles génératifs pour l'image Semestre 2 18 9
Intelligence artificielle et environnement Semestre 2 9 9
Convex optimization and applications in machine learning Semestre 1 21
Imagerie fonctionnelle cérébrale et interface cerveau machine Semestre 2 24
Géométrie et espaces de formes Semestre 2 21 9
Projet de recherche reprodutible Semestre 2 9 12
Deep learning for medical imaging Semestre 2 27
Analyse topologique de données pour l'imagerie et l'apprentissage automatique Semestre 1 12 12
Sub-pixel Image Processing Semestre 1 20 16
Remote sensing data: from sensor to large-scale geospatial data exploitation Semestre 2 31.5
Introduction to Probabilistic graphical models and deep generative models Semestre 1 30
Sequential learning Semestre 2 18
Méthodes mathématiques pour les neurosciences Semestre 1 24 16
Kernel Methods for machine learning Semestre 2 23
Introduction à l'imagerie numérique Semestre 1 21 6
Théorie de la détection et ses applications industrielles Semestre 2 24
Grandes matrices aléatoires application à l'apprentissage Semestre 2 24 6
Reconnaissance d’objets et vision artificielle Semestre 1 30
Introduction to statistical learning Semestre 1 16 8
Medical Image Analysis based on generative, geometric and biophysical models Semestre 1 24
Computational statistics Semestre 1 20 20
Advanced learning for text and graph data ALTEGRAD Semestre 1 14 14
Reinforcement learning Semestre 1
Image denoising : the human machine competition Semestre 1 20 10
Graphs in Machine Learning Semestre 2 16 12
Foundations of distributed and large scale computing optimization Semestre 1 24
Grands modèles de langage pour le code et la preuve Semestre 2 12 12
Génération de données en IA par transport et débruitage Semestre 2 27
AI and Computer vision for cultural heritage Semestre 2 12
Representation learning for computer vision and medical imaging Semestre 2 12 12
Stochastic calculus in machine learning Annualisé 24
Multimodal Explainable AI (XAI) Annualisé 10 17 2
Distributed training of large-scale models Annualisé 14 14 4
Subjects ECTS Semestre Lecture directed study practical class Lecture/directed study Lecture/practical class directed study/practical class distance-learning course Project Supervised studies
Projet de fin d'étude / stage MVA Semestre 2

Teaching Location(s)

GIF SUR YVETTE
PARIS 05
PARIS 06
PARIS 14
PALAISEAU

Contact

Programme Comparator

View and compare your programmes to identify the best options

0/3
Formations