Une erreur est survenue. Merci de réessayer ultérieurement
Le mail de partage a bien été envoyé.
M2 Advanced Materials, Structure and Energy for sustainable construction
Master's degree
Energie
Full-time academic programmes
English
The Department Génie Civil and Environment of ENS Paris-Saclay proposes a research-oriented Master program entitled « Materials, Structures and Energy for Sustainable Construction ». Its comprises two M2 programs:
Program Modeling and Computing for Construction Engineering,
Program Materials for Sustainable Construction and Environment.
The two M2 programs differ by the mandatory courses of semester S1, and by the research topics of semester S2.
The Modelling and Computing for Construction Engineering Master 2 program offers advanced training for future researchers, engineers, and designers in the mechanics of Civil Engineering materials and structures. Particular attention is paid to performance under extreme conditions that exceed standard regulatory requirements. Emphasis is placed on the design and analysis of structures subjected to complex loading, including dynamic, multi-physics, and stochastic (random) effects, as well as damage and failure of both materials and structures.
The Materials for Sustainable Construction and Environment Master 2 program is designed to train future researchers, engineers, and designers in developing and characterizing advanced materials for environmentally responsible construction. The program combines theoretical foundations, experimental practice, and research experience to address the challenges of sustainability and performance in construction materials and systems.
For the Modelling and Computing for Construction Engineering Master 2 program:
Advanced experimental investigation for construction engineering (hybrid testing, Digital Image Correlation, etc.).
Understanding and modeling deformation and degradation mechanisms in materials (durability, porous media, aging, etc.).
Analysis of damage, rupture, and failure in Civil Engineering materials and structures.
Mechanics of structures under extreme and non-standard conditions.
Finite Element computation of non-linear structural responses.
For the Materials for Sustainable Construction and Environment Master 2 program:
Simulate, model, and experiment the behavior (mechanical, thermal, hydric, morphological) of materials and structures in their environment.
Study advanced materials for sustainable construction and the environment.
Understand and analyze the degradation and damage mechanisms of these materials, exploring both local and global scales.
Energy management and sustainable development in construction.
Propose modern, research-based and high-level courses.
Objectives
For the Modelling and Computing for Construction Engineering Master 2 program
Students develop a solid foundation in scientific methodology, including bibliography analysis, experimental investigation, and the presentation of scientific results. The program develops multidisciplinary skills, combining state-of-the-art experimental tools (e.g., hybrid testing, Digital Image
Correlation) with theoretical and numerical modeling. Key points are understanding and simulating non-linear, possibly softening, mechanical behavior of Civil Engineering materials and structures.
Program Objectives: › Bridge the gap between experiments (observations, mechanical responses) and structural modeling for supporting sustainable construction, › Prepare students for research and engineering careers involving high-performance simulation and design under complex mechanical and environmental conditions, › Offer hands-on research experience through a supervised Scientific Training Period in a research lab, › Propose modern, research-based and high-level courses.
For the Materials for Sustainable Construction and Environment Master 2 program:
Students gain a multidisciplinary understanding of material behavior under environmental constraints,
exploring mechanical, thermal, hydric, and morphological phenomena. Special focus is placed on the degradation mechanisms, damage, durability, and environmental impact of materials, from microstructural processes to structural performance.
Program Objectives: › Provide a solid theoretical and practical foundation for research-oriented careers in sustainable construction materials. › Cultivate critical thinking and scientific reasoning through applied and investigative learning. › Offer hands-on research experience through a supervised internship in a research lab.
Career Opportunities
Career prospects
Après un Master ou Master + Doctorat : ingénieur (R&D, contrôle, production…)
Après un Master ou Master + Doctorat : ingénieur (recherche-développement, contrôle, production…) dans les domaines santé, pharmacie, agroalimentaire, biotechnologies, instruments et réactifs, cosmétique, dépollution et environnement
Après Master + Doctorat : chercheur ou enseignant-chercheur
Après un Master ou Master + Doctorat : ingénieur (recherche et développement, contrôle, production…)
Ingénieur d’études / de recherche dans un service R&D dans l’industrie ophtalmique
To enroll in this research-oriented Master 2 program, applicants must have completed at least the first year (M1) of a master degree, with theoretical training in civil engineering.
Engineers seeking to acquire research skills related to the « Materials, Structures and Energy for Sustainable Construction » program.
Application Period(s)
Inception Platform
From 05/03/2026 to 15/05/2026
Supporting documents
Compulsory supporting documents
Course selection sheet.
Rank of previous year and size of the promotion.
Motivation letter.
All transcripts of the years / semesters validated since the high school diploma at the date of application.
Certificate of English level (compulsory for non-English speakers).
Curriculum Vitae.
Additional supporting documents
VAP file (obligatory for all persons requesting a valuation of the assets to enter the diploma).
Digital Image Correlation and Identification (Part I)
Semester :
Semestre 1
Langue d'enseignement
Anglais
Enseignement à distance
non
Prérequis
Mechanics of Materials, finite-element method, statistics, probability theory
Programme / plan / contenus
Lectures on Digital Image Correlation (DIC)
Imaging devices (photons, electrons, and all the rest, Atomic Force Microscopy, resolution in space and time, 2D/3D, scanning/full field ...)
Images (grey-level histograms, and encoding depth, color coding, distortions ...)
Subpixel interpolation (pixel meaning from square box to cardinal splines, all are splines), correlation length, noise
Optical flow (description of what is conserved in images and what is not). Brightness / Contrast / Temperature / Elevation (Atomic Force Microscopy)
Kinematic basis (starting from translation and intercorrelation to finite-element)
Least squares formulation, and numerical solution; 1) gradient descent; 2) multiscale. Discussion on the Hessian matrix (eigenvalue spectrum, eigenmodes)
Uncertainty quantification, relation with Hessian matrix (motivation for regularization)
Specific challenges and applications of Digital Image Correlation for Civil Engineering structures, mini-structures and specimens
Examples will illustrate applications of DIC in civil engineering, in particular for the detection and quantification of damage.
Objectifs d'apprentissage
This course is devoted to the introduction of the general principles of Digital Image Correlation (DIC) as an inverse problem. It also deals with the quantification of measurement uncertainties.
Compétences
The students will master the theoretical and implementation aspects of DIC. They will be able to measure displacement fields via DIC, evaluate the measurement uncertainties, criticize the results, and choose advanced strategies for performing DIC measurements.
Bibliographie
Mesures de champs et identification en mécanique des solides, M. Grédiac, F Hild, Hermes science, 2011.
Full-field measurements and identification in solid mechanics, M. Grédiac, F. Hild, John Wiley & Sons, 2012
Comprehensive full-field measurements via Digital Image Correlation, S. Roux, F. Hild, in V. Silberschmidt (Edt.). Comprehensive Mechanics of Materials, 2, Elsevier, pp. 3-56, 2024.
Linear finite-element method, mechanics of materials for non-linear behavior, fundamentals on transfer, fundamentals on numerical methods (numerical integration, interpolation and solving a linear system)
Programme / plan / contenus
Architecture of a finite-element code for non-linear behavior, subroutine for the time integration of constitutive equations
Computational techniques for the solution of non-linear and time-dependent constitutive equations within the framework of the finite-element method
Consistent tangent operator
Explicit and implicit time integration for the evolution equations
Application to non-linear thermal transfer
Application to elasto-plasticity
Application to continuum damage mechanics
Individual projects for own implementation
Objectifs d'apprentissage
This course introduces the application of the finite-element method for the numerical prediction of the response of a structure composed of materials with non-linear constitutive behavior. Students learn how to derive systematically the algorithm for any material behavior. The course emphasizes conceptual development for a variety of non-linear constitutive equations. Thermal and mechanical applications are considered. Various temporal schemes are studied to solve evolution equations.
Compétences
By the end of the course, students are able to derive their own non-linear finite element program for the material behavior of interest, in particular to implement new material models into a finite-element code.
Bibliographie
E.A. de Souza Neto, D. Peric, D.R.J. Owen, Computational Methods for Plasticity: theory and applications, 2008.
The thermodynamics of irreversible processes is presented for solid materials, starting from thermo-poroelasticity up to the framework of standard generalized materials. Associated and non-associated elastoplasticity models are described in a general manner, applicable to both metals and geomaterials.
Shear/hydrostatic elastic energy density, deviatoric/hydrostatic stress, von Mises stress, anisotropy.
State variables, poro-elasticity.
3D visco-elasticity (elastic energy density, dissipation potential, viscosity larger for shear moduli than for bulk modulus) as a toy model for general constitutive equations.
Thermodynamics of solid materials: 1st and 2nd principle of thermodynamics, Clausius-Duhem Inequality, intrinsic dissipation.
Local state method, internal variables (including isotropic and kinematic hardening state variables).
Infinitesimal strain framework of standard generalized materials (associated / non-associated models), positivity of the intrinsic dissipation, heat equation for local states described by internal variables.
Associated elasto-plasticity: elasto-plasticity of metallic materials, elasto-plasticity of soils and rocks, poro-elasto-plasticity.
Objectifs d'apprentissage
The primary objective is to derive, within a thermodynamic framework that incorporates internal variables, the constitutive equations that describe the mechanical behavior of solids and soils throughout their lifetime.
By the end of the course, students will have mastered three-dimensional formulations of elasto- (visco-) plasticity models.
Bibliographie
J. Lemaitre, J.-L. Chaboche, Mechanics of Solid Materials, Cambridge University Press, 1991 (3rd Edition in French 2020).
Elementary thermodynamics, heat transfer, or fluid mechanics (recommended)
Programme / plan / contenus
Introduction to controlled energy, mechanical, and transport systems
Dynamic responses and stability analysis of active and reactive systems
Principles of feedback and basic optimization
Coupling of system components under varying boundary conditions
Case studies: adaptive building systems, active damping, and others
Research perspectives: design and validation of adaptive strategies
Objectifs d'apprentissage
This course introduces the theoretical and practical fundamentals of active and reactive systems that adapt to time-varying conditions. It covers the principles of dynamic system behavior, system stability, regulation, and feedback control. Students learn how system components interact and respond to changes in boundary conditions and external inputs. The course emphasizes conceptual understanding of optimization strategies, control law design, and the theoretical foundations necessary for modeling adaptive systems, preparing for more advanced control applications in Control of active and Reactive Systems - Part II.
Compétences
Students will be able to:
Describe active and reactive system behavior under dynamic conditions;
Understand feedback, stability, and basic optimization principles;
Analyze system responses to changing environments;
Identify applications for adaptive strategies in engineering systems.
Bibliographie
Åström, K.J., Murray, R.M. – Feedback Systems: An Introduction for Scientists and Engineers, Princeton University Press
Ogata, K. – Modern Control Engineering, Prentice Hall
Bennacer, R. – Selected research articles on adaptive control and energy system optimization
Recommended to have followed “Coupled energy and mass transfers in porous media”, “Thermodynamics of solid materials – part II porous media”, and “Continuum damage mechanics for quasi-brittle materials”.
Programme / plan / contenus
Hydration and heat release
Development of the microstructure and physical/mechanical properties
Autogenous and drying shrinkage
Basic and drying creep
Modelling of thermal, chemical, hydric, and mechanical behavior at early-age and long-term
Objectifs d'apprentissage
This course deals with the delayed behavior of construction materials under both environmental (relative humidity, temperature) and mechanical loadings from early age to long-term (hydration, shrinkage, creep). The experimental behavior and the role of the formulation are studied. Chemo-physical mechanisms and existing models are developed to predict material behavior.
Understand the mechanisms of hydration, shrinkage, and creep in relation to the mix design and the ambient conditions
Model the early-age and long-term behavior of cement-based materials:
Analyze the cracking risk by shrinkage restraint through analytical calculations and numerical simulations.
Bibliographie
Ollivier J.-P., Torrenti J.-M., Carcasses M. (2012) Physical Properties of Concrete and Concrete Constituents, Wiley
Benboudjema F., Carette J., Delsaute B., Honorio de Faria T., Knoppik A., Lacarrière L., Neiry de Mendonça Lopes A., Rossi P., Staquet S. (2018), Chapter 4, « Mechanical properties », dans Thermal Cracking of Massive Concrete Structures, Rilem Technical Committee CMS, Springer International Publishing, ISBN 978-3-319-76617-1, 2019
Marigo (1981) damage model and Lemaitre-Mazars (1980, 1984) damage model for concrete.
Non associated elasto-plasticity: dilatancy of geo-materials, Drucker-Prager and Willam-Warnke elasto-plasticity.
Plastic modulus, tangent operator for rate independent Drucker-Prager plasticity.
Poro-elasto-plasticity, drained and undrained tangent operators.
Elasto-visco-plasticity of soils.
Objectifs d'apprentissage
The students will master the three-dimensional, nonlinear material models used for the design of 3D Civil Engineering structures and/or soils subjected to complex loadings.
Specific constitutive equations are detailed, with a focus on non-isothermal loading conditions and poro-elasto-plasticity. The positivity of the intrinsic dissipation and the fulfillment of the second principle of thermodynamics are checked systematically.
Bibliographie
J. Lemaitre, J.-L. Chaboche, Mechanics of Solid Materials, Cambridge University Press, 1991 (3rd Edition in French, 2009).
Optimal Space-time Digital Image Correlation, Poisson noise
Mechanical regularization
Multiview correlation
Lectures on identification based on Digital Image Correlation
Identification using the Finite-Element Method Updating (FEMU)
Identification using the integrated Digital Image Correlation (iDIC).
Integrated Digital Image Correlation for Linear Elastic Fracture Mechanics: measurement of the stress intensity factors KI, KII, supersingular terms
Application to Construction Engineering
The identification of material parameters using temperature / displacement fields is performed via Finite Element Model Updating (FEMU) for heat transfer applications and/or Continuum Damage Mechanics. Different cost functions are discussed and their relationship to measurement uncertainties is established.
Objectifs d'apprentissage
The course integrates research-oriented procedures dealing with advanced DIC techniques, such as mechanical regularization for robust DIC, space-time DIC, multiview and multimodal correlation for 3D surface and volumetric analyses. The students will also learn how to extract model parameters from measured displacement fields, or directly from images via integrated approaches.
Bibliographie
Mesures de champs et identification en mécanique des solides, M. Grédiac, F Hild, Hermes science, 2011.
Full-field measurements and identification in solid mechanics, M. Grédiac, F. Hild, John Wiley & Sons, 2012
Comprehensive full-field measurements via Digital Image Correlation, S. Roux, F. Hild, in V. Silberschmidt (Edt.). Comprehensive Mechanics of Materials, 2, Elsevier, pp. 3-56, 2024.
Fundamentals/advanced Finite-Element Method, background in structural modeling, Engineering mathematics
Programme / plan / contenus
This course focuses on the advanced application of the finite element method and non-linear material constitutive models in Construction Engineering. Emphasis is placed on the assessment of resilience under complex loading, up to failure. Key topics include simplified modeling approaches, advanced finite-element techniques, and resilience assessment methods tailored to extreme loading scenarios.
Multi-fiber beam finite element
Crack modeling in finite-element simulations of quasi-brittle material and structures: continuous damage model, embedded discontinuities, discrete elements
Multiscale modeling
Measures of Robustness and Resilience of structures: Risk-Oriented, Reliability-Based, Energy-Based, Accumulative Damage models… resilience Measures.
Objectifs d'apprentissage
Built on the bases of engineering mathematics, mechanics, and structural analysis, the course “Advanced Structural Modeling” enables students to meet the growing challenges of modeling complex civil constructions up to failure.
Compétences
By the end of the course, students will have the expertise to apply sophisticated numerical models that represent the mechanical degradation of Construction Engineering structures in both research and professional settings.
Bibliographie
de Borst R., “Fracture and damage in quasi-brittle materials: A comparison of approaches”, Theoretical and Applied Fracture Mechanics, 2022
Bodnar B., Larbi W., Titirla, M., Deü J.-F., Gatuingt F., Ragueneau F., “Hyper-reduced order models for accelerating parametric analyses on reinforced concrete structures subjected to earthquakes", Computer-Aided Civil and Infrastructure Engineering, 2024
Desmorat R., Gatuingt F. and Ragueneau F., “Non standard thermodynamics framework for robust computations with induced anisotropic damage”, Int. J. Damage Mechanics., 2010.
Kotronis P, Davenne L & Mazars J (2004). Poutre multifibre Timoshenko pour la modélisation de structures en béton armé. Revue Française de Génie Civil, 2004.
Thermodynamics, heat transfer, and fluid mechanics
Basic numerical methods
Fundamentals of materials science or environmental processes
Programme / plan / contenus
Heat and mass transfer in porous and composite materials
Diffusion, advection, and phase change mechanisms
Sorption, capillarity, condensation, and chemical coupling
Governing equations and constitutive relationships
Multiphase modeling and micro–macro coupling
Thermodynamic equilibrium and non-equilibrium processes
Applications: insulation, energy storage, drying, geothermal systems, and remediation
Objectifs d'apprentissage
This course provides an advanced understanding of heat, mass, and momentum transfer in porous and composite materials. It combines theoretical, modeling, and experimental approaches to study phenomena such as diffusion, advection, phase change, and interfacial interactions. The course emphasizes the link between micro- and macro-scale processes and develops advanced skills to model, simulate, and optimize multiphase and multiscale systems using computational tools and sustainability-driven design principles. It enables evaluation of material performance, improvement of energy efficiency, safety, and durability, and supports the development of sustainable technologies and resilient infrastructures in renewable energy, building physics, and environmental engineering. Furthermore, the course integrates a research-oriented perspective, fostering expertise in the design, analysis, and validation of innovative experimental setups, numerical models, and theoretical frameworks for investigating complex transport phenomena in porous media, preparing for contributions to cutting-edge scientific research.
Compétences
Students will be able to:
Formulate and analyze transport equations in porous media.
Model multiphase and multiscale processes.
Link micro- and macro-scale phenomena to optimize systems.
Evaluate energy and environmental system performance.
Continuum Damage Mechanics for Quasi-brittle Materials
Semester :
Semestre 1
Langue d'enseignement
Anglais
Enseignement à distance
non
Prérequis
Continuum Mechanics, elasto-plasticity, thermodynamics of irreversible processes
Programme / plan / contenus
Three-dimensional isotropic (scalar) damage models are first described, such as those proposed by Marigo and Mazars. These models will be criticized from the points of view both of thermodynamics soundness and of representativity of multiaxial responses of cementitious materials.
The question of the tensorial nature of damage is then addressed. Effective stresses are defined, and the principle of strain equivalence is used to couple both elasticity and (visco-)plasticity with damage. A sound thermodynamics formulation of the loading-induced damage anisotropy of quasi-brittle materials is then provided.
First damage models (Marigo 1981, Lemaitre-Mazars 1980, Mazars 1984).
Thermodynamics of damage, on the difficulties of ensuring the positivity of the intrinsic dissipation in Continuum Damage Mechanics.
Loading-induced anisotropic damage of quasi-brittle materials such as concrete.
Permanent strains due to damage, coupling or not coupling with (visco-)plasticity
Elements of modeling of cyclic mechanical responses of quasi-brittle materials.
Visco-damage.
Quasi-implicit numerical schemes for anisotropic damage models.
Nonlocal, Eikonal Nonlocal, Gradient damage models, Phase field regularization.
Objectifs d'apprentissage
The main objective is to derive, in the thermodynamics framework of Continuum Damage Mechanics, three-dimensional constitutive equations for quasi-brittle materials such as concrete.
The student will become fluent in Continuum Damage Mechanics. They will acquire the necessary insight to propose relevant tests and procedures for identifying the material parameters.
Bibliographie
J. Lemaitre, A course on damage mechanics, Springer Verlag, 1992.
J. Lemaitre, R. Desmorat, Engineering damage mechanics: ductile, creep, fatigue and brittle failures, Springer, 2005.
J. Lemaitre, J.-L. Chaboche, R. Desmorat, A. Benallal, Mécanique des matériaux solides, 3e éd. 2020.
Advanced Formulations of Rational Mechanics and of its Coupling
Semester :
Semestre 1
Langue d'enseignement
Anglais
Enseignement à distance
non
Prérequis
Continuum Mechanics
Programme / plan / contenus
Geometric reformulation of Continuum Mechanics: configurations as embedding, the body as a manifold with border, stresses as powers/1-forms. Strain rate, finite strain, and stress tensors defined by pullback/pushforward operations.
Conservation laws are formulated using the Lie derivative.
Differential forms, and their application to modern 4D formulation of electromagnetism.
Primary and secondary field variables in physics and mechanics, a general Lagrangian framework for couplings formulation, and elements of variation calculus.
Objectifs d'apprentissage
The main objective is to introduce advanced geometry concept (Riemannian geometry, exterior calculus…) to formulate modern Continuum Mechanics and its coupling with electromagnetism.
Bibliographie
Kolev B., Desmorat R., An intrinsic geometric formulation of hyper-elasticity, pressure potential and non-holonomic constraints, Journal of Elasticity, 146(1), 29-63, 2021.
Kolev B., Desmorat, R., Objective rates as covariant derivatives on the manifold of Riemannian metrics, Archive for Rational Mechanics and Analysis, 248(4), 66, 2024.
Kolev K., Éléments de géométrie différentielle à l'usage des mécaniciens. 2020. hal-03330418
Scientific Machine Learning - Application to Construction Engineering
Semester :
Semestre 1
Langue d'enseignement
Anglais
Enseignement à distance
non
Prérequis
Probability theory, Continuum Mechanics, Structural analysis
Programme / plan / contenus
Review of the fundamentals of probability theory: random variables, information entropy, estimation, statistical analysis, stochastic fields
Probabilistic modeling tools and uncertainty propagation methods, polynomial chaos, Monte Carlo simulation
Description of random fields from Karhunen-Loève expansion, parametric studies from kriging approaches
Machine learning: supervised learning for classification and regression, stochastic gradient, universal approximation theorem, two-layer neural networks, deep networks and convolutional networks, unsupervised and semi-supervised learning, autoencoders, generative adversarial networks (GANs)
Risk assessment by combining a probabilistic approach and machine learning
Application to a nonlinear structural response in civil engineering.
Objectifs d'apprentissage
Unlike traditional deterministic design methods, which rely on fixed safety factors, probabilistic approaches explicitly account for uncertainty in loads, material properties, geometry, and environmental conditions. Students will learn how to quantify, model, and manage these uncertainties to make more informed and resilient engineering decisions.
In particular, this course explores how probabilistic mechanics and machine learning are combined to enhance risk assessment, reliability analysis, and decision-making in civil engineering. Traditional deterministic design approaches are being transformed by data-driven methods that can better capture uncertainty, complexity, and interdependence in infrastructure systems. Students will learn to apply probabilistic and machine learning techniques to predict performance, assess risk, and support resilient, adaptive engineering design.
This course reviews the fundamentals of probability, statistics, and information theory to account for Uncertainty Modeling, Quantification, and Propagation in structural and material mechanics
Reliability analysis for non-linear response.
Statistical and Machine learning to build efficient surrogate models for structures or materials, taking advantage of extensive databases originating from either advanced experiments or numerical simulations.
Bibliographie
The stochastic finite element method: Past, present and future. G. Stefanou, 2009
Sto chastic Finite Element Methods and Reliability. A State-of-the-Art Report. B. SUDRET, A. DER KIUREGHIAN, 2000
Presentation and discussion on experimental characterization of microstructure and porosity of construction materials: SEM, XRD, TGA, X-ray tomography, MIP etc..
Analysis of research experimental devices for diffusion and permeation in reactive porous materials.
Sensor principles used in thermal, diffusion, permeation etc.
Analysis of real experimental results: influence of Representative Elementary Volume (REV), material parameters variability and sensors uncertainties
Practical works (4) realized by the students: durability analysis, accelerated chloride diffusion, permeation and micromorphology.
Objectifs d'apprentissage
This course explores different experimental techniques on civil engineering materials in relation to their durability from the microscopic scale to the scale of the materials. Microstructural analysis (mineral phases, liquids and porosity) testing devices used in research applications are described and analyzed (SEM, XRD, TGA, X-ray tomography, MIP etc.). Sensors for the measurements of temperature, relative humidity, pressure etc. are also studied. Effect of Representative Elementary Volume (REV), material parameters variability and sensors uncertainties are discussed. 4 practical works will be realized by the students: durability analysis, accelerated chloride diffusion, permeation and micromorphology.
Bibliographie
V.S. Ramachandran, James J. Beaudoin, Handbook of Analytical Techniques in Concrete Science and Technology, William Andrew Publishing, 2001, ISBN 9780815514374.
Nicolas BURLION, "Test techniques and experimental characterization", edited by Jean-Michel Torrenti, GillesPijaudier-Cabot and Jean-Marie Reynouard, Wiley, 2010, p. 3-55.
Modèles adaptatifs et approches pilotées par les données
Semester :
Semestre 1
Détail du volume horaire :
Lecture :24
Practical study :6
Langue d'enseignement
Anglais
Enseignement à distance
non
Prérequis
Mécanique des milieux continus, méthodes des éléments finis, analyse fonctionnelle, notions de programmation.
Objectifs d'apprentissage
La modélisation et la simulation numérique sont au coeur des activités modernes en recherche et ingénierie. De ce fait, et pour assurer la fiabilité des résultats de simulation, la maîtrise des modèles et des calculs est une problématique fondamentale. L’objectif est de calculer juste au juste coût. Le cours vise à présenter les concepts de base utilisés pour atteindre cet objectif, ainsi que leur mise en œuvre pratique.
Les outils d’estimation d’erreur de discrétisation et d’adaptation de maillage dans le cadre de la méthode des éléments finis apparaissent comme précurseurs pour la vérification des modèles numériques. Cependant, la thématique englobe à présent un spectre beaucoup plus large d’outils impactant toute la chaine de modélisation. On peut citer par exemple la modélisation multi-fidélité, avec contrôle de l’erreur du modèle mathématique dans les techniques de réduction de modèle et de couplage multiéchelle par exemple, ou la modélisation pertinente en lien avec la richesse de l’information expérimentale (quantité et niveau de bruit des mesures) dans la résolution de problèmes inverses et l’assimilation de données. Toutes ces composantes sont abordées dans le cours.
Organisation générale et modalités pédagogiques
Le cours présente d’abord les techniques classiques d’estimation d’erreur (basées sur les résidus d’équilibre, les techniques de lissage, ou l’erreur en relation de comportement) et d’adaptation de maillage dans le cadre de la méthode des éléments finis. Des extensions au contrôle de quantités d’intérêt (via la technique de l’adjoint) et aux problèmes non-linéaires (à partir d’arguments de dualité) sont faites. Ensuite, le contrôle de l’erreur de modèle est abordé pour les approches multiéchelles et de réduction de modèle (PGD, bases réduites). Enfin, la sélection des modèles en cohérence avec les données expérimentales est traité. Des développements récents de recherche sont montrés tout au long du cours et une sensibilisation aux challenges scientifiques actuels dans la thématique est apportée. Le cours est accompagné d’un projet numérique durant lequel les étudiants mettent en œuvre et analysent certaines méthodes de contrôle et d’adaptation pour en mesurer leurs performances.
cement-based materials microstructure, Coupled energy and mass transfers in porous media, basics in mechanical behavior of structures
Programme / plan / contenus
Presentation and discussion on chemo-physical mechanisms controlling the durability of reinforced concrete structures
Analysis of the effects of temperature, relative humidity, chemical environment and mix design on the main pathologies of concrete and rebar
Experimental measurements in laboratory and on field (destructive and nondestructive techniques)
Modelling of transport phenomena regarding leaching, CO2, chloride and sulfate transports, internal swelling
Analysis of structural behavior of degraded reinforced concrete structures due to internal swelling
Objectifs d'apprentissage
This course deals with the prediction of durability of building construction materials and structure. Main chemical attacks are analyzed in regards to environmental conditions (temperature, relative humidity and chemical environments) and material mix design :carbonation, chloride and (internal and external) sulphatic attacks, Alkali-silica reaction and leaching. Chemo-physical mechanisms from the nanostructure to the mesoscopic scales are detailed, in relation to the effects on the structure level. Experiments, multiscale and Multiphysics modeling approaches and design recommendations are analyzed and discussed.
Bibliographie
Marios Soutsos, ICE Handbook of Concrete Durability. A practical guide to the design of resilient concrete structures, ICE Publishing, 576 pages
Kefei Li, Durability Design Of Concrete Structures, 2016 John Wiley & Sons Singapore Pte. Ltd.
heat transfer, thermodynamics of materials, basic image processing
Programme / plan / contenus
Part 1: Multiscale Thermo-Hygro-Morphic Behavior
The first part of the course focuses on the physical mechanisms and multiscale interactions governing the thermo-hygro-morphic behavior of porous and bio-based materials. The lectures address the coupling between heat, moisture, and deformation processes, as well as the influence of material structure and morphology across different observation scales. Special attention is given to the impact of these coupled phenomena on material aging and biodeterioration, highlighting how environmental conditions accelerate degradation and alter performance over time. Emphasis is placed on understanding experimental characterization methods and their integration into predictive models.
Part 2: Morphological Characterization and Numerical Simulation
The practical sessions introduce digital tools for analyzing and simulating the behavior of real materials. Students first use ImageJ to perform morphological analysis of material microstructures (e.g., porosity, texture, orientation). Based on these results, a 3D simulation using COMSOL Multiphysics is carried out to model the thermo-hygro-morphic responses on an actual material geometry.
Objectifs d'apprentissage
The course aims to study, through innovative approaches, the hygro-morphic behavior in porous materials in general, and bio-based materials in particular. Several scales of observation are considered, from the cell wall scale of the plant component of these materials to the envelope scale.
In terms of modeling, the aim is to improve current knowledge of existing models by considering the real 3D morphology of the material, including its hygro-morphic behavior. Particular attention is devoted to integrating the hysteresis phenomenon and the dimensional variation of the materials.
Bibliographie
Rima A., Abahri K., Bennai F., El Hachem & Bonnet M. (2021). Microscopic estimation of swelling and shrinkage of hemp concrete in response to relative humidity variations, Journal of Building Engineering
Kosiachevskyi D., El-Hachem C., Abahri K., Bennacer R. & Chaouche M. (2021). Biomaterials heterogeneous displacement, strain and swelling under hydric sorption/desorption: 2D image correlation on spruce wood, Construction and Building Materials
El Hachem C., Abahri K., Leclerc S. & Bennacer R., (2020). NMR and XRD quantification of bound and free water interaction of spruce wood fibers, Construction and Building Materials
Elementary knowledge of renewable energy systems (recommended)
Programme / plan / contenus
Thermodynamic behavior of building envelopes and high-performance components, including multi-layered insulation and glazing
Passive and hybrid strategies: free cooling, natural ventilation, thermal mass, daylighting, and energy management
Integration of renewable energy systems and energy storage for net-zero and positive-energy objectives
Modeling, simulation, evaluation, and research applications in sustainable and energy-positive building systems
Objectifs d'apprentissage
This course provides an advanced understanding of building energy performance, with a focus on thermal dynamics, energy efficiency, and integration of renewable energy systems. It combines theoretical and applied perspectives on heat transfer, thermodynamic behavior of building envelopes, and dynamic interactions between building components and environmental conditions. The course investigates strategies to achieve net-zero or energy-positive buildings, including passive cooling, free cooling, thermal storage, and active energy management. Emphasis is placed on modeling, simulation, and optimization of energy flows, integrating component-level efficiency with system-level performance, and evaluating the interactions between renewable energy sources and building operation. The course also adopts a research-oriented approach, enabling students to develop scientific expertise in the analysis, design, and performance evaluation of sustainable building systems.
Bibliographie
Fabbri, K., et al. – Energy Efficiency in Buildings, Springer
Bennacer, R. – Selected research articles on building energy performance and renewable integration
From Experiments to Modeling and Simulation for Sustainable Construction
Semester :
Semestre 1
Détail du volume horaire :
Lecture :12
Langue d'enseignement
Anglais
Enseignement à distance
non
Prérequis
Experimental methods, durability, life cycle analysis, cement-based materials microstructure, modelling of transport phenomena in porous materials (energy and mass), numerical methods
Programme / plan / contenus
Analysis of experimental results in steady state and transient conditions. Identification of material parameters (diffusivity, permeability).
Several projects will be proposed to students, and each group will have to choose a topic.
Proposal of an ionic (chlorides) or gaseous (CO2) diffusion model taking into account porosity, then composition parameters. Numerical implementation in the linear then nonlinear case. Multi-criteria analysis to identify the optimal composition and geometry.
Proposal of a model taking into account liquid water permeation (drying) and gas tightness. Coupling between the two models. Application to a containment building for nuclear reactors, to predict its service-life.
Objectifs d'apprentissage
The objectives of this course are to apply the skills acquired in the field of experimental methods and modeling of transport phenomena in porous materials, as well as in the field of numerical methods. The experimental results (permeability and ion diffusion) obtained during the practical work in the experimental methods module will be used to predict the lifespan of a reinforced concrete structure (bridges, nuclear power plants, dams, etc.). A model will be developed by proposing hypotheses on transport mechanisms and analyzing boundary conditions. The solution of parabolic partial differential equations (PDE) in the linear and nonlinear domains will be implemented. A multi-criteria analysis (price, environmental impact: greenhouse gas emissions, resource depletion, etc.) will be carried out to identify the optimal geometry and composition of the material to be used.
Bibliographie
Kumar, P. - Mehta – Monteiro, P.: Concrete Microstructure, Properties, and Materials, McGraw Hill, third edition,http://dx.doi.org/10.1036/0071462899.
Ababneh A., Benboudjema F., Xi Y., Chloride penetration in nonsaturated concrete, Journal of Materials in Civil Engineering, ASCE journal, 2003, 2(15), p. 183-191.
After a brief review of heat transfers, various numerical methods used to solve the heat equation are reviewed, followed by a presentation of modal methods. The course alternates lectures and practical classes during which students code methods covered in class.
Part 2: Inverse Problems.
The inverse problem is presented. Using the previously obtained reduced model, the objective is to identify a parameter of the problem, either a material property or a time-varying boundary condition.
Objectifs d'apprentissage
In addition to its obvious applications, heat transfer is omnipresent for the design of systems, whether in thermomechanics or metrology. Its precise consideration involves the numerical solution of the heat equation, which might require significant memory space and computation time. This often prohibits its implementation in iterative process encountered in inverse problems. These latter aim to determine causes or parameters from observed effects, and are crucial in various scientific and mathematical fields.
The course is a numerical/code module applied to heat transfer. Its objective is to present modal reduction methods for the numerical solution of the heat equation, as well as their application to inverse problems such as parameter identification.
Bibliographie
F. Joly, Y. Rouizi, O. Quéméner, Type of inverse problem, model reduction, model identification, Part B, Advanced Automn School in Thermal Measurements and Inverse Techniques METTI8, 24-29 september, Ile d’Oléron, France.
Mécanique des fluides élémentaire (bilans de masse, de quantité de mouvement, d'énergie. Théorème de Bernoulli).
Programme / plan / contenus
- Aérogénération : historique, développement actuel et principes de base
- Eolienne standard : fonctionnement, rendement instantané et production annuelle
- Energies marines : éolien off-shore, hydroliennes et dispositifs houlo-moteurs
Des études de cas et des dimensionnement sont proposés sous forme d'exercices de TD et d'une séance de TP numérique encadré.
Objectifs d'apprentissage
Le cours présente les grands principes, éprouvés ou émergents, sur lesquels les machines de production d'énergie renouvelable éolienne et marine sont conçus, avec un accent mis sur la modélisation en aérodynamique des rotors et sur la prédiction de l'énergie annuelle produite. Continuellement remis à jour, il aborde aussi l'actualité très fournie dans ces domaines.
Compétences
- Compréhension et prévision de la conversion mécanique dans une machine de production d’énergie renouvelable éolienne ou marine
- Dimensionnement et design d’une machine de production d’énergie renouvelable éolienne ou marine
- Prévision de l’énergie produite annuellement par une machine de production d’énergie renouvelable éolienne ou marine.
Bibliographie
HAU, E. (2006) Wind turbines, Fundamentals, technologies, application, economics, second edition, Springer.
LE GOURIERES, D. (2008) Les éoliennes, Editions du Moulin Cadiou. Journal des Energies Renouvelables.
Base de la programmation (Python), maitrise d'un environnement sous Unix.
Programme / plan / contenus
- Introduction générale sur le calcul haute performance
- Bases de l'utilisation d'un super-calculateur (Slurm)
- Fonctionnement de la bibliothèque MPI pour l'écriture d'un programme parallèle
- Etude de la performance.
Objectifs d'apprentissage
Ce cours est une introduction à la programmation parallèle appliquée au domaine scientifique. Les ressources de calcul nécessaire à la résolution de nombreux problèmes physiques nécessitent l’utilisation de super-calculateurs. Les super-calculateurs sont des machines parallèles composées d’un grand nombre d’unités de calcul (processeur, GPU) connectées au travers d'un réseau extrêmement rapide. Le défi du Calcul Haute Performance est de faire travailler efficacement ensemble toutes ces unités de calcul.
Organisation générale et modalités pédagogiques
L'UE s'organise autour de 4 séances de 3h45 avec une alternance de cours et de TD. L'UE est évalué par un projet.
Bibliographie
- Cours de l'IDRIS sur MPI : https://www.idris.fr/formations/mpi/
Méthodes numériques (interpolation, différenciation, analyse de stabilité, ordre & consistance, différences finies)
Résolution de systèmes linéaires (méthodes directes, méthodes itératives)
Bases de la programmation (Fortran ou C, Python)
Programme / plan / contenus
- Introduction à la méthodes des Volumes Finis et principes de base
- Résolution de problèmes modèles : équation de Laplace, équation d'Helmholtz
- Problème de convection-diffusion : schémas Upwind, Power-Law, Quick, TVD, ...
- Problèmatique du couplage vitesse-pression : introduction des spécifités des écoulements incompressibles, maillages décalés, méthodes stationnaires (SIMPLE, PISO) et instationnaires (méthode de projection)
- Méthodes de résolution des systèmes linéaires : méthodes directes (algorithme de Thomas), méthode itératives (multi-grille)
- Introduction aux méthodes de maillage adaptatif
- Implémentation d'un schéma de résolution de l'équation de Navier-Stokes pour des configurations académiques (cavité entraînée, cavité différentiellement chauffée).
Objectifs d'apprentissage
La méthode des Volumes Finis est une méthode classique pour discrétiser les équations régissant les écoulements de fluide. Lors de ce cours, une introduction à cette méthode sera donnée, en présentant les principales caractéristiques et propriétés de la méthode, d'abord sur des équations modèles (transfert de la chaleur, stationnaire puis instationnaire, sans transport puis avec, mono-dimensionnel puis 2D, puis vers les équations de Navier-Stokes).
Ces techniques seront ensuite appliquées à de nombreux exemples pour discrétisation dans des Travaux Dirigés puis implémentation algorithmique et informatique dans des Travaux Pratiques.
Ce cours se restreint aux écoulements incompressibles. Une brève ouverture sera mentionnée vers les écoulements compressibles et leurs spécificités de résolution.
Organisation générale et modalités pédagogiques
Cours. Travaux Dirigés pour travailler sur la discrétisation des équations. Projet pour l'implémentation de la méthode : accompagnement en Travaux Pratiques et travail personnel.
Bibliographie
- Fletcher, C.A.J., Computational techniques for fluid dynamics, Vol. 1& 2, Springer Berlin Heidelberg. ed, 1991
- Hirsch, C., Numerical computation of internal and external flows, Vol. 2, Wiley ed, 1990
- Versteeg & Malalasekera, An Introduction to
Computational Fluid Dynamics, 2ème édition, éd.
Pearson, 2007
Each student carries out individual bibliography research on a scientific subject, under the guidance of a member of Laboratoire de Mécanique Paris-Saclay (LMPS), UMR CNRS 9026.
Objectifs d'apprentissage
Students are trained in scientific methodology, including bibliographic analysis and the presentation of scientific results.
This project aims to prepare students to communicate scientific results related to cutting-edge topics (writing an abstract, a list of hihlights, a graphical abstract).
The internship enables the student to gain initial research experience within a research group. A research project, including a bibliography and own investigation (analytical development, modeling, or experiment), is carried out. A few collective and individual guidance sessions are organized by the Master program.
After agreement with the heads of the M2 programs, the opening course(s) can be chosen either among the Master programs lists of courses, or can be chosen from another M2 or among those proposed by the Graduate School Engineering and System Science.
After agreement with the heads of the M2 programs, the opening course(s) can be chosen either among the Master programs lists of courses, or can be chosen from another M2 or among those proposed by the Graduate School Engineering and System Science.