Starting in the fourth trimester, M2 DiPaC involves a mandatory 6 month internship. The internship addresses the program themes—high-performance, parallel, and distributed computing—or one of two specializations (HPC for AI & big data analysis (HPDA) or Hybrid HPC/quantum computing (HQI)), and is hosted by a research lab or an industry team within a company (engineering or R&D). In the end, students submit a written report and present their work during the internship defenses for evaluation.
The curriculum includes seven core disciplinary courses in high performance, parallel, and distributed computing. In addition, students choose two elective courses to further specialize either in high performance data analysis and AI (HPDA) or in hybrid high performance/quantum computing (HQI). In addition, one soft-skill course from the university catalog reinforces transferable professional skills that support their long-term career development. A mandatory 6 month internship on M2 DiPaC-related themes completes the program.
The program’s official language is English; all courses take place and course materials are provided in English. Most of our faculty are also fluent in French; hence interaction in French is possible in the courses and assignments (homework, exams, etc.) if needed.
The program is closely integrated within the Paris-Saclay ecosystem of research laboratories and industrial partners.
Informations
Skills
Be able to read and understand research articles in the fields of distributed, parallel and quantum computing.
Objectives
Computer systems are evolving toward higher efficiency and richer functionality across three major, interconnected scientific fields:
- Distributed systems deliver connectivity and dependable operation across the Internet, clouds, clusters, and sensors, addressing hard problems in synchronization, security, concurrency, and robustness.
- High-performance and parallel computing (HPC) tackles intensive workloads in science and AI by exploiting supercomputing architectures and rigorous performance engineering.
- Quantum computing provides algorithms and hardware that exploit quantum parallelism to achieve gains unreachable by classical paradigms.
Building on the foundations that M1 DiPaQ establishes in HPC, distributed systems, and quantum computing, M2 DiPaC specializes on advanced topics in HPC and distributed algorithms for large-scale systems. Students learn to design fast, scalable, and robust solutions for applications in AI, big data analytics, scientific simulations, and quantum-enabled workflows. Students have the opportunity to specialize either in high performance data analysis (HPDA) or hybrid HPC/quantum computing (HQI) through elective courses.
Knowledge objectives:
- Parallel programming models and performance engineering on modern supercomputers and accelerators.
- Large-scale distributed algorithms and systems: replication, consensus, consistency, mobile agents, and nature-inspired algorithms with robustness and performance guarantees.
- Big data analysis, machine learning, and AI algorithms with massive computational challenges (HPDA)
- Quantum algorithms and simulation using both classical/HPC or quantum workflows (HQI)
Skill objectives:
- Building high-quality parallel and distributed algorithms and software that meet latency, throughput, and performance targets on target HPC architectures.
- Developing and analyzing scalable, robust algorithms with theoretical guarantees on scalability, consensus, termination, and fault tolerance.
- Optimizing HPC code across the stack: complexity, memory locality, vectorization, accelerator use, communication, I/O, and networks.
Resources and practice:
- Access to university clusters and partner supercomputers for hands-on labs, course projects, code development, and tuning.
- Use of open-source toolchains and libraries widely adopted by the HPC community.
- Acquiring modern HPC software engineering practices with advanced C++, IDEs, version control (git), documentation, and continuous integration.
Career Opportunities
Career prospects
Après un Master ou Master + Doctorat : chercheur ou enseignant-chercheur
Après Master + Doctorat : chercheur ou enseignant-chercheur
Après un Master ou Master + Doctorat : ingénieur (recherche et développement, contrôle, production…)
Expert science des données
Expert en gestion de données
Consultant en éthique de l’intelligence artificielle et de la data
Après un Master : Data scientist
Après un Master : Spécialiste en intelligence artificielle (IA)
Ingenieur R&D
Responsable de projets R&D
Chef de projet
Consultant
Délégué à la protection des données
Responsable de systèmes d’information
Further Study Opportunities
Doctorat
École d’ingénieur
Mémoire de recherche
Thèse de doctorat
Formations complémentaires en management de l’innovation
Les étudiants titulaires d’un M2 ont la possibilité de poursuivre dans la recherche en doctorat
Fees and scholarships
The amounts may vary depending on the programme and your personal circumstances.
Admission Route
Capacity
Available Places
Public visé et prérequis
- Public. Le M2 DiPaC est la suite naturelle du M1 DiPaQ pour les étudiants souhaitant se spécialiser en calcul haute performance (HPC) avancé, calcul parallèle et informatique distribuée.
- Prérequis. Solide formation en informatique avec des bases en programmation parallèle et en systèmes distribués. De solides compétences en mathématiques (notamment en algèbre linéaire) et en programmation sont attendues.
- Admissions depuis des parcours apparentés. Des étudiants d’excellence issus de masters connexes peuvent être admis s’ils possèdent déjà des fondamentaux en calcul parallèle et distribué. Le cas échéant, ils peuvent suivre certaines UE du M1 DiPaQ en option pour rattraper les bases.
- Voie double cursus. Nous admettons régulièrement des étudiants ingénieurs d’excellence achevant leur quatrième année (équivalent M1) dans des écoles de Paris-Saclay (CentraleSupélec, Polytech Paris-Saclay, ENSTA Paris) en double cursus afin d’effectuer leur cinquième année d’études à l’école en parallèle du M2 DiPaC. Un aménagement pédagogique dédié entre les programmes permet de suivre des cours dans les deux formations, avec des dispenses possibles sous réserve de l’accord des responsables du master. Si vous envisagez de candidater, contactez au préalable le coordinateur du M2 DiPaC et votre responsable de l’année à l’école.
- Positionnement par rapport au M2 QMI. Bien que le M2 DiPaC propose des cours optionnels en calcul quantique alignées avec les workflows classiques/HPC, les candidats souhaitant se consacrer exclusivement à l’information quantique avancée sont encouragés à candidater au programme partenaire M2 QMI.
Un nombre limité de bourses (Eiffel, IDEX, Quantum Saclay) sont disponibles pour des candidats exceptionnels.
Application Period(s)
From 15/04/2026 to 30/05/2026
Supporting documents
Compulsory supporting documents
Motivation letter.
All transcripts of the years / semesters validated since the high school diploma at the date of application.
Curriculum Vitae.
Additional supporting documents
Copy diplomas.
Letter of recommendation or internship evaluation.
Document at your convenience.
VAP file (obligatory for all persons requesting a valuation of the assets to enter the diploma).
Supporting documents :
- Residence permit stating the country of residence of the first country
- Or receipt of request stating the country of first asylum
- Or document from the UNHCR granting refugee status
- Or receipt of refugee status request delivered in France
- Or residence permit stating the refugee status delivered in France
- Or document stating subsidiary protection in France or abroad
- Or document stating temporary protection in France or abroad.
Location
Academic partner
École Polytechnique
Télécom Paris
INRIA
Sorbonne Université
Université de Paris
Technion - Israel Institute of Technology
University of Tennessee
Old Dominion University
École Polytechnique Fédérale de Lausanne
Lisbon University
Karlsruhe Institute of Technology
University of Vienna