

FONDATION PARIS-SACLAY .. université

Gait rehabilitation based on bio-kinematic signals Jinan Charafeddine, Sylvain Chevallier

Challenge and Opportunities

Related works

Co-contraction index: After the determination of the walking sequence (double support, unipodal phase, ...), CCI is computed as a ratio between agonist and antagonist muscles. Numerous definitions of CCI in the literature, focus on the most precise.

$CCI_{1} = \frac{2 \int_{t_{1}}^{t_{2}} (ENV_{emg_{AGO}}(t) \cap ENV_{emg_{ANTA}}(t)) dt}{\int_{t_{1}}^{t_{2}} ENV_{emg_{AGO}}(t) + ENV_{emg_{ANTA}}(t) dt} \times 100$

 $CCI_{2} = \frac{\int_{t1}^{t2} (ENV_{emg_{AGO}}(t) \cap ENV_{emg_{ANTA}}(t)) dt}{\int_{t1}^{t2} (ENV_{emg_{AGO}}(t) \cup ENV_{emg_{ANTA}}(t)) dt} \times 100$

Hamstring

Hamstring

Stay relaxed

Neuro-Motor Index

Steppage gait Waddling gait	Treadmill Foot-plates	Jt1 (Livenig AGO (C) & Livenig ANTA (C)) at	Quadriceps
Gait disorder types	Lower limb rehabilitation exoskeleton models	Movement Agonists Antagonists	19
Assist lower-limb movement during walking for people with spasticity, as in cerebral palsy (CP), stroke (cerebral accident vascular : CA) by the Medical Exoskeleton taking into account the ability of their muscles to bring about a movement.		ProblemFlexionQuadricepsHamstringsExtensionHamstringsQuadricepsMovementAgonistsAntagonists	Hams
Existing exoskeleton control		Flexion Hamstrings Quadriceps	
Interaction force controllers using impedance or admittance	Musculoskeletal model based on EMG signals	Novel neuro-motor control scher	ontracts Stay re
Pr	roblems		
 Having a Fixed trajectories. Does not take into account the physical change of patient while moving. 	Operation is not applicable when muscle	$argmin_t f'(t) $; where $f(t) = ENV(emg_{ATNAGO}(t) \cap emg_{AGO}(t))$	• Find peaks
	 disorder Users give different EMG signals and 	$Rx(t) = h_1(t) \cdot f_0 + h_2(t) \cdot p_0 + h_3(t) \cdot f_1 + h_4(t) \cdot p_1;$	 Interpolate
	variations of speed	where : h_1 , h_2 , h_3 and $h_4 \in H_e$; p_0 and p_1 tangent at f_0 and f_0	f_1
		NMI = CCI2 + Rx(t). CCI3	• Neuro-Mo [*]
 For both approaches: the capabilities and the walk specificity of each patient are not taken into account. 		 Specificities of Neuro-Motor Index (NMI): calculate in the joint flexion/extension sequence 	

- calculate in the joint flexion/extension sequence
- Online method for control

Needs and Goal

Material and method

On 11 gait cycles for 20 subjects (healthy, stroke and cerebral palsy).

Bio-Kinematic Study:

Linearize the results using canonical correlation analysis CCA

• Extract the underlying correlation of joint angles and co-contraction • Finds linear combinations such that the is maximized • Finds a new gait angle using healthy angles for reference

 $Corr(I_k, \Theta_i) = \rho(I, \Theta) = \frac{cov(\Theta, I)}{\sigma_{\Theta} \sigma_I} = \frac{E[(\Theta - \mu_{\Theta})(I - \mu_I)]}{\sigma_{\Theta} \sigma_I}$

 $CORR(CCA_{ik})_{j} = \frac{cov (CCA1, CCA2, CCA3)}{\sqrt{cov (CCA1, CCA3).cov (CCA2, CCA2, CCA3)}}$

Results

On our data from healthy subjects, with three velocities (slow, normal, and fast), And for stroke and cerebral palsy subjects

- Kinematics study :

- Electromyography (EMG) study :

Data for 2 joints, Knee and Hip

on a flat support: in three velocity (slow, normal and fast) Angles "O" (Flexion /extension) of each joint

only 2 bi-articular muscle groups, hamstring and quadriceps:

Fewer control parameters: biarticular muscle allow to control two joints with limited EMG recording

CCA applied at three groups $(\Theta, I); \Theta$ represents the knee joint angle during complete gait cycle, and I represents NMI

for a three velocities:

CCA applied at NMI and the knee angles for stroke subject. Healthy angles are used for reference

- The correlation is almost linear, The percentage of correlation is very high for stroke and cerebral palsy subjects :

- The resulting angle is improved while respecting the muscular capacity

Conclusion

>Control an rehabilitation exoskeleton should be done with collaboration and secure.

> The effectiveness of bio kinematic-based for control strategy was investigated to achieve

the needed secure use and collaboration.

>NMI can find a relation between co-contraction muscles and joint angles.

CCA can find a new gait angle that takes into account muscle capacity

Université Paris- Saclay @ 2021