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Outline of the course

courses 1 — 2: basics of quantum computing and standard algorithms (Anthony Leverrier)
» May 29 (9:15 - 10:45): basics of quantum computing: qubits, measurements, circuit
model, query complexity model, Simon’s algorithm

» June 5 (11:00 — 12:30): quantum Fourier transform, Shor’s algorithm, Grover’s
algorithm

courses 3 — 4: quantum error correction and quantum fault tolerance (Mazyar Mirrahimi)

» June 18: basics of quantum error correction (discretization of errors, Shor an Steane
codes) and fault-tolerance

» June 25: towards experimental implementation: surface codes and continuous-variable
codes
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Related material

This course is largely inspired from the remarkable set of notes by Ronald de Wolf,
available online.

» Quantum Computing: Lecture Notes by Ronald de Wolf
http://homepages.cwi.nl/"rdewolf/qcnotes.pdf

Other ressources include:

> the classic “Quantum computation and quantum information” by Nielsen & Chuang

» Lecture notes by John Preskill
http://www.theory.caltech.edu/people/preskill/ph229/
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The end of Moore’s law

Intel
First Production

Intel Delays Mass Production of 10 nm CPUs to
2019

by Anton Shilow on April 2T, 2058 12:30 M ERT

https://www.anandtech.com/show/12693/

intel-delays-mass-production-of-10-nm-cpus-to-2019
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Why study quantum computing?

quantum computation

» investigation of the computational power of computer based on quantum mechanical
principles
» main objective: find algorithms with speedup compared to classical algos

Motivations

» miniaturization reaches levels where quantum effects become non-negligible. One can
either try to suppress them or to exploit them.

» speedups for computation, but also applications in cryptography

» objective is to understand the power of the strongest-possible computing devices
allowed by Nature
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Genesis of quantum computing

Feynman 1981

“Can quantum systems be probabilistically simulated by a classical computer?
[-..] The answer is almost certainly, No!"
—> use quantum systems to simulate quantum systems!

—> birth of quantum simulation

Deutsch 1985
» quantum Turing machine

> existence of a universal machine

—> birth of quantum computing

Bernstein, Vazirani 1993

> efficient quantum Turing machine (complexity class BQP)

> Bernstein-Vazirani problem: f: {0,1}® — {0, 1} such that f(x) =a-x
Find a. —> ok with 1 quantum query vs n classically
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The first algorithms

Simon, Shor 1994
exponential speedups for

» period finding

» factoring!! very surprising = sparked a lot of interest in the field

> discrete logarithm

— exploits Quantum Fourier Transform

—> consequences for public-key cryptography: breaks most cryptosystems deployed today

Grover 1996

> search an n-item list with O(y/n) queries

> lots of applications (find collisions, approximate counting, shortest path)

but only quadratic improvement
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States, evolution, measurement
in this course, we restrict ourselves to pure n-qubit states: |¢) € (C2)*®
1) = 20-00]0 - 00) + @0.01]0 -+ O1) -+ + argoopy |1+ - 11)

with ) |a;> =1 (normalization) and |ijiz---in) := [i1) ® [i2) ® - - - @ |in)

in practice, one needs to deal with decoherence, and therefore mixed states but quantum
fault-tolerance techniques can be applied to deal with such issues (threshold theorem):
see Mazyar’s course

the state is evolved unitarily, possibly by applying the unitary U (such that UUT = 1)
also on ancilla qubits initialized in |0)®™:

|¥) — Ulp)[0)=™

in this course, states are measured in the computational (standard) basis: the
measurement returns the string i € {0, 1}® with probability

P(A) = [({]9)]* = |az]?
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Elementary gates

gate: unitary acting on a small number of qubits (typically between 1 and 3), similar to
classical logic gates AND, OR and NOT

single-qubit gates

» bitflip gate X: |0) <> |1) X = <(1) (1)>

. 1 0
» phase-flip gate Z: |0) — |0), |1) — —|1) Z= <0 _1>
» phase-flip gate Ry: [0) = [0), |1) — €l?|1) Ry = L0 T:=R

o ] ¢ 0 el 5 /4
L (11
» Hadamard gate: |0) <> |+), 1) < |—) H=711 4
1
&) = (0 £]1))
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Elementary gates

two-qubit gates

» controlled-not (CNOT): flips the second input qubit if the first one is |1), and does

nothing if the first qubit is |0)

CNOT|0)[b) = |0)[b)
=1

CNOT]|1)|b) = |1)]1 — b)
1 0 0 0
01 0 O
CRIOIT = 0 0 0 1
0 01 0

» controlled-U (for single-qubit unitary U):
I, 0
0 U

A. Leverrier Quantum computing

IQUPS 2018

11/27



A. Leverrier Quantum computing IQUPS 2018 12/27



Models of quantum computing

There are different models to describe how a quantum computer can apply computational
steps to its registers of qubits.

v

quantum Turing machine (Deutsch 1985: states, tape, transition function...)

v

circuit model: this course

v

adiabatic quantum computing:

encode your problem as a Hamiltonian H and the solution as a ground state

start with a ground state of an easy Hamiltonian Hy

slowly evolve the system by applying (1 — a(t))Hg + a(t)H for a(tinit) = 0, a(tgn) = 1
provided that the evolution is sufficiently slow, one remains in the ground state

vV vy VvVvYyYy

» measurement-based quantum computing (Raussendorf, Briegel 2002):

» start with a generic highly entangled state: a cluster state
» measure each qubit one by one and update following measurement angles as a function
of previous measurement results

Theorem

These models are equivalent: they can simulate each other in polynomial time
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The circuit model

We are mostly interested in classical problems where the input is some n-bit string
x € {0,1}", and we want an output y € {0, 1}™, possibly with m = 1.

> input state: |¥) ® [0)® (input + ancilla)

» unitary operation: U described as a quantum network of elementary gates

» output: measure the final (n + n’)-qubit state in the computational basis

Note that the answer is generally probabilistic. Sometimes we repeat the process a few
times and take a majority vote.

Question

can any unitary operation U acting on N qubits be decomposed into a circuit of
elementary gates acting on 1 or 2 qubits?
—> universal gate set: reduces to infinitely-many elementary gates

— Kitaev-Solovay theorem: approximate unitary with finite gate set
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Universality of simple gate sets

universal gate set

Any unitary on N qubits can be decomposed using
» arbitrary single qubit gates
> the 2-qubit CNOT gate

Problem: it is not realistic to be able to perform arbitrary single-qubit gates with infinite
precision. We would like a finite gate set.

Kitaev-Solovay theorem

The following sets allow to approximate any unitary arbitrarily well:
» CNOT, Hadamard H, T-gate T = R4
» Hadamard and Toffoli (3-qubit gate CCNOT) if the unitary have only real entries

Solovay-Kitaev: any 1 or 2-qubit unitary can be approximated up to error € using
polylog(1/¢€) gates from the set.
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Quantum parallelism

The main motivation for quantum computation: “perform many computations in
superposition”.

Lemma

Suppose we have a classical algorithm that computes some function f : {0, 1} — {0, 1}™.
Then we can build a quantum circuit U consisting only of Toffoli gates that maps

Ur o [¥[0) = [¥i(x)).

Not |x) > |£(x)) ...not unitary in general!

Consequence: .
HE|0)on = )
\/2711)(6{0,1}“
U( L v \x>|o>> - 1))
\/QTIXE{OJ}“ @Xe{o,1}n
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Quantum parallelism
The main motivation for quantum computation: “perform many computations in
superposition”.
Lemma

Suppose we have a classical algorithm that computes some function f : {0, 1}* — {0, 1}™.
Then we can build a quantum circuit U consisting only of Toffoli gates that maps

Ur o [9[0) = [9)f(x)).

Caution!

» One applies Us just once, but the final state contains f(x) for all 2" input values.

» However, measuring the output state in the computational basis only yields a single
(random) couple (x, f(x)).

» Holevo theorem: one cannot extract more than n bits of information from n qubits
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Query complexity model

Standard circuit model: input of computation is encoded in the input state; quantum
circuit; measurement in computational basis .. . how many gates?

Query complexity model: the input (e.g. a function) is accessed as a black box

N-bit input x = (x1, -+ ,xn) € {0, 1}V

| 2

| 2

>

Usually, N = 2™: bit x; can be addressed with n-bit string i.

Example: x is a Boolean function f: {0,1}* — {0,1}, f{(i) =x

input = N-bit memory (Random Access Memory) which can be accessed as a
black-box at any point we want.

modeled as a quantum unitary on n + 1 qubits (n-bit address and single-bit target)
Ox : |1,0) — |i,x3)
Ox : |1, b) — |i,x; ® b)

alternative phase-oracle: Oy 1 : |i) — (—1)%i|i)

A. Leverrier Quantum computing IQUPS 2018 19/27



Some early algorithms
provide speedups in query complexity model, not in the standard circuit model
Deutsch-Jozsa (1992)
For N = 2% we are given x € {0, 1} either
» constant: all x; are equal

» balanced: half of x; are 0, half are 1

Find which one.

Bernstein-Vazirani (1993)

For N = 2% we are given x € {0, 1}~ such that Ja € {0, 1}" with x; = (i-a) mod 2.
Find a.

Simon (1994)

For N = 2", we are given x = (x1,- - ,xn) with x; € {0, 1}™ with the property that
Js#0€{0,1}" such that x =% < (i=] or i=]Ps).
Find s.
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Deutsch-Josza

the problem
For N = 28, we are given x € {0, 1} either

» constant: all x; are equal
» balanced: half of x; are 0, half are 1

Find which one.

complexity

» classical deterministic (no errors): at least N/2 + 1 queries needed
» classical if errors are allowed: constant number of queries

» quantum: single query!

— separation quantum vs exact classical
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Deutsch-Josza

0
o U
0

i —1)%i
\/ﬁie{%}“ @ie{OZJ}“( Sl
. D% Y (—1)H])

je{0,1}n

V2n ie{g,:l}
Amplitude of |0™) state:

FI <>{ 1Rl v
V2n ic{0,1}» 0 if xlis balanced

Yields [0") iff x is constant: 1 query and O(n) operations
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Bernstein-Vazirani

the problem: linear function, find coefficients

For N = 2", we are given x € {0, 1}Y such that Ja € {0, 1}® with x; = (i-a) mod 2.
Find a.

complexity

» randomized classical, small errors allowed: needs at least n queries (each query gives
at most 1 bit of info)

» quantum: single query!

same algorithm as Deusch-Josza: (—1)% = (—1)(a) mod2 — (_q)ia
state after the query:

H=H"'! = |a)
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Simon’s algorithm
Exponential speedup for query complexity (we count queries, not ordinary operations)

hidden period for 2-to-1 function

For N = 2", we are given x = (x1, -+ ,xn) with x; € {0, 1} with the property that
Js # 0 € {0, 1}" such that

xi=%j < (i=j or i=]Ps).

Find s.
Note that x; is an n-bit string, not a single bit.
complexity

» randomized classical algorithm in O(+y/2") queries with birthday paradox

> this is essentially optimal for classical algorithms

» quantum (Simon’s algorithm): O(n) queries

— exponential separation quantum vs randomized classical
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Simon’s algorithm

10) Hon

Ux

0) = A=

|on>|on>ﬁ¢12~n Y fon) — & i)

ic{0,1}n ic{0,1}n

Measure 2nd n-bit register: yields x; € {0, 1}", collapses the first register to superposition of 2
indices compatible with x;

. .
E(|l>+|l@s>)|xi>
Hadamard to first n qubits:
1 1 . :
— | X D+ Y (—nieddl) | = Y, (=DPA+(=1))j)
27 \jefopn jefonyn V2 jefonyn
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Simon’s algorithm

Measure state

1 L s
\/Wje{%}n(_l) Y1+ (=)

v

lj) has nonzero amplitude iff s-j =0 mod 2.

» The measurement outcome is uniformly drawn from {j|s-j =0 mod 2}.

v

= linear equation giving information about s
> repeat until we get n — 1 independent linear equations

» solutions are 0 and s via Gaussian elimination (classical circuit of size O(n3) )

—> exponential speedup in the query complexity model! Can we get it in the standard
model as well?
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Recap

» quantum computers can exploit quantum parallelism, but cannot really do an
exponential number of computations in parallel

> one single output!

» different models of quantum computing: circuit, measurement-based, adiabatic
computing, all equivalent (up to polynomials)

Today: “speedup” in query complexity model

» black-box access to a function

» provable, exponential improvement, but not in a real situation

Next week: speedup in standard gate complexity model

» Shor’s algorithm for factoring

» Grover’s algorithm for search
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