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Optical Quantum Engineering;:
From fundamentals to applications
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o Lecture 1 (7 March, 9:15-10:45) :
Qubits, entanglement and Bell's inequalities.

o Lecture 2 (14 March,11:00-12:30) :
From QND measurements to quantum gates and quantum information.

e Lecture 3 (21 March, 9:15-10:45) :
Quantum cryptography with discrete and continuous variables.

e Lecture 4 (28 March, 11:10-12:30) :
Non-Gaussian quantum optics and optical quantum networks.

1. Bell’s Inequalities : solution

1. By inverting the equations when ¢ = 0 we get :
|[+2) = cos(0/2)[+z) — sin(0/2)|—g)
|—2) = sin(0/2)+7) + cos(0/2)|—z)
and thus (omitting the vector symbol) :
|42, —2) = cos(6/2)sin(02/2)|+a, +p) + cos(01/2) cos(02/2)|+a, —p)
— sin(61/2) sin(62/2)|—q, +) — sin(61/2) cos(02/2)|—a, —p)
| =z, +2) = sin(61/2) cos(02/2)|+a, +p) — sin(61/2) sin(62/2)[+a, —p)
+ cos(01/2) cos(02/2)|=a, +p) — cos(61/2) sin(2/2)|—a, —p)
and thus:

[v) = (sin((02 — 61)/2)[+a, +p) + cos((02 — 61)/2)[+a, —p)
— cos((0 — 01)/2)|—a, +p) + sin((62 — 01)/2)|—a, —p))/ V2
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2. a. Each measurement can give the results +1, so there are 4 possibilities
(+a, +3)s (+a,—p), (—a, +p), €t (—a, —p) with probabilities :
0o — 61 1

5 ) Pr—=Py= §COSQ(

92—91)
P

1
Py =P _= 551112(

2.b For one particle one sums the results for the other one, and thus

P+ = P+++P+_ = 1/2 et P = P_++P__ = 1/2

2.c Poopg = Pr—/P- = COSQ((HQ —01)/2)
2.d If 89 = 0 then P, ,; =1 : full correlation between results.

2e. Eg=Pyy — Pr— — P_y+ P__: correlation function.
Eg = —cos?((02 — 01)/2) +sin®((65 — 01)/2) = — cos(y — 0y) = —@.b

Si |Eg| = 1 again full correlation (or anticorrelation) between the results.

3. A(\, @) et A(\, @) are either equal or opposite in sign.

-ifequal A\, @)+A(\, @) = +2and A\, @)— A\, @) =0, so s(\) = 42
- if oppositeA(\, @) + A\, @) = 0 and A\, @) — A(\,@) = 42, so
s(A) = £2. The average of a quantity equal to +2 over a positive and
normalized distribution must be between +2 and —2, hence the result.

4. For the indicated angles one has
S = —3cos(0) + cos(30) thus dSq/df = 3(sin(0) — sin(30)).
The derivative cancels for 30 = 6 + 2nm, i.e. 0 = nm (minimum), or
30 =m—0+2nm, ie 0 =mn/44nn/2 (maximum).
One has thus 6 = 7/4 ou 37 /4, and
Sg = —3cos(m/4) + cos(97/4) = —d cos(m/4) = —2V/2.

Finally one has [S() jaz| = 2V2 > 2 : conflict




2. QND measurement of a spin component : solution.

u_n

One wants to perform a QND measurement of 7, on a qubit “a” : if the
qubit is a spin 1/2 particle, one gets the spin “a” to interact with another
spin “b" during a time 7, and read out the result on spin “b".

An appropriate interaction Hamiltonian is : Hy, = hg 64, 0y,./2

) ) Everything happens as if qubit
Z  Final state :
S a creates on qubit b an effec-
of qubit b . ic field. aliened al
A if az=+1 tive magnetlc _|e ,a |gne. along
N By if Ox, with a sign dependlr.1g on
W a1 the state |£),. (see exercise !).
\ y
e T e
/ Initial state
/ .
X AN of qubit b [+)az® )by — [+)az®+)p2
y ) .
Bcff if Final S.tate |_>az®|+>by — Z|_>az®|_>bz
az=+1 of qubit b
if az=-1

-

QND measurement of a spin component.

wu_n

One wants to perform a measurement on a qubit “a” by using an indi-
rect (rather than direct) measurement, called a “Quantum Non Demolition”
(QND) measurement. For instance, if the qubit is a spin 1/2 particle, one
will not use a Stern-Gerlach magnet, but rather get the spin “a” to interact
with another spin “b" during a time 7, and read out the result on spin “b".
After the interaction, one measures (directly) the state of qubit b, and one
wants to infer the states of qubit a.

The spin observables of the two qubits are &, j, and

oazlaz : £1) = £lax : 1),
oaylay - £1) = £|ay : £1),
Oazlaz : £1) = £]az : £1),
with the same definitions for b, and :
laz : £) = (laz : +)E|az : =))/V2, |ay: £) = (Jaz : +)%ilaz : —))/V2
lay : £) = (1 £ 0)|ax : +) + (L Fi)|ax : =))/2
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2. The interaction is described by the hamiltonian H,, = hg 04, 0p,/2,
acting during a duration 7. The operators H,, 0. and o3, commute, and
the eigenstates of Hy, are |az : £) and |bx : £). The eigenvalues £hg/2
are obtained by multiplying the eigenvalues of o,. and oyp,, which are a
complete set of commuting observables.
3. The initial state of the pair of qubits is |14 (0)) = |az : +)®|by : +), and
the duration of the interaction is g7 = /2. Calculate the system'’s final state
|t)(7)). Same question if the initial state is [¢)—(0)) = |az : —) ® |by : +).
Give an interpretation of these results by considering the expression of H,;,
and Bloch's sphere for the qubit b, in the two cases where the qubit a is in
either of the two states {|az : £1)}.
|¥(0)) = |az : +) ® |by : +)
|4 (7)) = |az : +)((1+ i)e_igT/Q\bx )+ (11— i)ei97/2|bx :—))/2
= laz: +)(|bx: +) + bz =))/V2  (since g7/2 = 7 /4)
= laz:+) @bz : +)

In the same way |¢)_(7)) = ilaz : —) ® |bz : —). The state of qubit a does
not change, and qubit b “copies” this state.
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4. Starting from the initial state [1)(0)) = (a]az : +)+8laz : —))@|by : +),
one measures the spin component of qubit b along Oz, after the interaction
has been carried out and turned off.

What are the possible results, and what are their probabilities 7 After this
measurement, what can be said about the component along Oz for qubit a ?
Justify the name “QND measurement” given to this kind of process.

11(0)) = (alaz : +) + flaz : —)) @ |by : +) and from the superposi-
tion principle :

(7)) = (o Jaz : +)|bz - +) +if |az . —)|bz 1 —))

This is a correlated state very close to the EPR state : a measurement
on qubit gives +1 with probability [|> and —1 with probability |3|?. For
each result, the state of qubit a is perfectly known after the measurement
(“reduction of the wave packet”). The quantum measurement of o, is done
by an “indirect measurement”, called a QND measurement.




3. Schmidt decomposition : solution.

1. One has :

[Wap) =D cijlui)alvyg =D lu) 4 cilvpyp) =D lui)alw)
I i J 5

where we define |w;)p =3~ ¢;j[v)) B
One has [$45) (6ap] = S (us){us1) alhen) (w;])  and thus :

pa = 2 (ug) () alvglw) (wjlvg)

ik

= > (Jui) (uj) a(wjlog) (og|ws)

ik

— Z(|ul><u]\)/1<wj|wz>
i,J

where we used the closure relation > ;. |vg) (vg| = I.
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It is assumed that p4 = >; p; (Ju;)[(w;i|) 4, and this by using the result

of the previous question :
(wjlw;) = 0if i # j, therefore the vectors {|w;)} are orthogonal.
(wilw;) = p;, so the norm of |w;) is equal to /p;.

. Defining [w;) = |w;)/,/P; the vectors {|w;) g} are normalized and or-

thogonal, and one has :

[VaB) = Z Vi |ui) alw;)

. Using the Schmidt decomposition of the state |¢)4) one gets :

PB = vaz (J;) (i) B-

The reduced density matrix p 4 et pg have the same non-zero eigenvalues,
which are p;.

. The Schmidt number is equal to one iff [t) 45) = |p 4)|x B), Which is true

iff [0 43) is separable.

4. Security of quantum cryptography: solution

. Mutual informations /g4 and Igg :
Ipa=H(Bx)— H(Bx|A) et Ipp = H(Bx) — H(Bx|E).
and therefore A = I4p — Igp = H(Bx|E) — H(Bx|A).

. Starting from a pure entangled state, Bob will receive a pure state condi-
tioned by Alice's and Eve's measurement. One can then use the entropic
inequalities and thus H(Bx|A, E) + H(By|A, E) > —2logy c.

Since the entropies can only increase when igoring (deleting) part of the
information one has

H(Bx|E) + H(By|A) = —2logy ¢

. Using H(Bx|E) > —2logy c — H(By|A) one gets :

Al > —2logyc — H(Bx|A) — H(By|A) = =2 (logy c + H(B|A)).

The protocol will be secure if AI > 0, this is obtained when log, ¢ +
H(B|A) < 0 oralso H(B|A) < —logy ¢

. For the BB84 protocol one has ¢ = 1/+/2 and thus —logyc = 1/2.

The protocol will be secure if H(B|A) < 1/2.
Since H(B) =1 (isotropic density matrix), one has :

I4p = H(B) — H(B|A) > 1/2.

.One has Iqp=1— H(e), ot H(e) = —elogge — (1 — ¢e)logy(1 —e).

Therefore one require 1 — H(e) > 1/2, or also H(e) < 1/2 (could be
directly obtained from H(B|A) < 1/2). By plotting H(e) one sees that
this condition corresponds to e < 11%. Note that /45 = 1 — H(e) is the
channel capacity of a binary channel with errors, and that I yp+1ggp < 1.
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Lecture 3 - Quantum cryptography (discrete and continuous) (Tuesday 21/03)
2.1 Quantum cryptography : basic ideas.
2.2 Continuous variable quantum cryptography : principles

2.3 Continuous variable quantum cryptography : implementations

The characters

Eve

Bob

Public key cryptosystems
Rivest, Shamir et Adelman (RSA, 1978)

What is inside the « public key » ?
the product P of two large numbers :
factorization very difficult to perform !

PUBLIC KEY CRYPTOSYSTEMS

- Public key cryptosystems (1970's) :
Security due to the difficulty to perform the calculation required to break the
code. Usual exemple : "RSA" code (Rivest, Shamir and Adleman, 1978)

aand b two large easy p=ab, gq=(a-1).(b-1),rand s so that
. —_—
prime numbers calculation gcd(q,s)=1letr.s=1moduloq

|

- Bob sends openly p and r (the key), and keeps q and s

- For coding "x", Alice calculates | y = x' modulo p| and sends openly "y"
- Surprising result of numbers theory : | x = yS modulo p| ok for Bob !

But the eavesdropper (Eve) does not know s, q, a, b, and cannot do anything,

because the calculation of a and b from p requires an exponential time with

the best present algorithms.  (unfeasible when p has more than 200 digits)




| Factorising RSA 155 (512 bits - summer 1999) |

« Challenge » proposed the RSA company (www.rsa.com)
Previous record : RSA140 (465 bits), february 1999

RSA155 =109417386415705274218097073220403576120037329454492\
059909138421314763499842889347847179972578912673324976257528\
99781833797076537244027146743531593354333897;

RSA155 is not a prime ! ("probabilistic" algorithm, very fast)

Factorization ? Preparation : 9 weeks over 10 workstations.
Sieve : 3.5 months over 300 PCs , 6 countries
Result : 3.7 Go, stored in Amsterdam

Processing : 9.5 days on Cray C916, Amsterdam
Factorization: 39.4 hours on 4 workstations

« Challenges » proposed by the company RSA

f1 =102639592829741105772054196573991675\
900716567808038066803341933521790711307779;

2 = 106603488380168454820927220360012878\
679207958575989291522270608237193062808643;

f1 and f2 are primes, and f1 * f2 = RSA155 (immediate on PC)

Number bits | digits | date completed sieving time algorithm
Cl16 116 1990 275 MIPS years mpqs
RSA-120 398 120 June, 1993 830 MIPS years mpqs
RSA-129 428 129 April, 1994 5000 MIPS years mpqs
RSA-130 431 130 April, 1996 1000 MIPS years gnfs
RSA-140 465 140 | February, 1999 2000 MIPS years gnfs
==P>| RSA-512 512 155 August, 1999 8000 MIPS years gnfs
C158 158 January, 2002 | 3.4 Pentium 1GHz CPU years gnfs
RSA-160 530 160 March, 2003 2.7 Pentium 1GHz CPU years gnfs
RSA-576 576 174 | December, 2003 | 13.2 Pentium 1GHz CPU years gnfs
Cl176 176 May, 2005 48.6 Pentium 1GHz CPU years gnfs
RSA-200 663 200 May, 2005 121 Pentium 1GHz CPU years gnfs
==P | RSA-768 768 232 Dec, 2009 3,300 Opteron 1GHz CPU years| gnfs

Improvement by three orders of magnitude between 1999 and 2009...

PUBLIC KEY CRYPTOSYSTEMS

- Problems :
- Mathematical demonstrations about PKC have a statistical character
(the factorisation may be found easily for "unfortunate choices" of a, b)

--> "recommendations" for the choice of the prime numbers a and b

- No absolute demonstration for security -> better computers, better
algorithms (obviously kept secret) ?

- Article by Peter Shor (1994) :
a "quantum computer" might be able to factorize the product of two

prime numbers in a "polynomial" time ! lot of reactions !

Best classical algorithm (number field sieve) :
nfs[n] = Exp[1.9 Log[n]"? Log[Log[n]]?3]

Shor algorithm : shor[n] = Log[n]? shor[21924] / shor[2512] = 8

nfs[21024] / nfs[2512] = 6.2 106

Secret key cryptosystem :
one-time pad (G. Vernam, 1917)

10101 |7

+
"
011010  g—¢ 8—r 011010
= +
classical channel @
o1t ] @ - @@ 110111
Demonstrably secure if the key is : = 101101

* random
* as long as the message
+ used only once (Shannon)




Quantum Secret Key Cryptosystem :
Bennett-Brassard (1984)

101101 [ 7

+
uantum channel @

011010 88— 1 > B 011010
= ) — +
110111 @ . classical channel & R Ii@ 110111
Demonstrably secure if the key is : -

* random =7 o101

* as long as the message
+ used only once (Shannon)
* unknown by Eve : Quantum laws !

Polarization of a Single Photon J

Coding a bit (O or 1)
on the polarization

0
7 of one photon 50 %
- c

'one photon

Deterministic result

B

Change
of basis

7

Deterministic result

Polarization of a Single Photon ]

Coding abit (O or 1)
on the polarization

of one photon 50 %

’ouc photon

Deterministic result

A useful information is extracted
if and only if the basis
used by the emitter (coding)
and by the receiver (detecting)
are the same !

N

Change
of basis

'

Deterministic result

Polarization of a Single Photon J

Coding a bit (O or 1)
on the polarization

f one photon
of one photo 50 %

'one photon

Deterministic result

The polarization of a single
photon carries a 1
"quantum bit" or "qubit"

B

Change
of basis

145°) =(lh ) +1v )V2 7
1135°Y) =(lh ) - v )2 Deterministic result




« BB84 » Protocol (Bennett and Brassard, 1984)

—|—>< .><>< I >< I I >< Coding basis

1N /7 7/ — 7 1 =\ Sentbit

| 1 0 0 0 0 1 0

——

I 1 >< ] >< >< -—‘— -—’— >< Reading basis
o

1 — 71N — N Received bit
o 0 1 1 0 1

« BB84 » Protocol (Bennett and Brassard, 1984)

-—’— >< >< >< I >< I I >< Coding basis

PN 77 = 7 [ =, \, Sentbit
0

0 1 0

P X At XX

1NN
1 1

PN = — —

| 1 0 o o !

1

I '\l Received bit

. N
I @ < @ @ % Il 0 1 Discussion ]1 @ . @ @ /0' I1 I' \1
1 % o Tt =0 N\ Sifted key I L 7 NS N
% QUANTUM CRYPTOGRAPHY : PRINCIPLE %ﬁ?&’"’ﬁ % QUANTUM CRYPTOGRAPHY : PRINCIPLE %t
) (C. Bennett and G. Brassard, 1984) i ,n,,,.,,,,‘f,vop,,»q,,e (C. Bennett and G. Brassard, 1984) B

Institut d'Optique
é/fl’(?/.r:w
Eve has to make a measurement without knowing the basis used by Alice
( this information comes too late for her ! )

All such measurements
will create errors in the

g it transmission
- use quantum non-demolition measurements. .. ( the more Eve knows, the

- duplicate (clone) photons and keep one aside... more errors ! )

- intercept / resend using either the + or x basis
- intercept / resend using an optimized basis (22.5°)

1 bli.tlf( Mutual information : I,,=1-h[e]  h[e] =- e log,[e] - (I-¢) log,[1-€]
0.8 NG binary entropy
L= 1-T,,

0.6 .
(maximum !)
04 If Eve has all power allowed by
quantum mechanics, she will get less
error  information than Bob as long as the

5 10 15 20 25 30 r?ttyi )e error rate is smaller than 11 %

11 %

Size of the secretkey : K=1,; -1,

02 Bob -Alice

EM’C/_)‘J»’I’
5 - Classical post-processing (essential for security !)
Requires a public authenticated channel

* Evaluation of errors :
After the initial exchange between Alice and Bob
measure the error rate by comparing publicly a part of the raw key:
-> evaluation of the amount of information (maybe) available to Eve.

* Error correction and privacy amplification ( possible if I,; > 1, !)
Then Alice and Bob extract the available key by correcting errors and
eliminating Eve's residual knowledge (this reduces the size of the key)

I, Error correction Privacy amplification
I, (block parity tests) (hashing functions) I
- - AB I

6 - Alice and Bob have a totally secure and errorless secret key
(non-zero size if initial QBER < 11%)




Industrial Perspectives ?

* Several startups worldwide are selling QKD systems (optical fibers, 50 km)

The key to future-proof

Mﬂ]Q Quantum Information Solutions for the Real World.
confidentiality " »

| |

Prosentiog the first

i commercial quantum
m‘ cryptography scutiors
IdQuantique MagiQQ Technologies
(Genéve) (New York)

* Intense activity in the USA (mostly military) and in Japan (NEC, Fujitsu...)

* In Europe « Integrated Project » SECOQC : SECOQC

« Secure Communication based on Quantum Cryptography ».
Urban networks demonstrated in Vienna (2008) and Tokyo (2010, 2015...)

LaPalma and Tenerife

30°N

legranzao
Graciosay

b w0\ Santa Cruz

o de la Palma
4? ntaCruz
Puertod Tenerife

LagD

Lo Gomero
San s&nsm
‘dela Gomera |

alverde
El Hiero

Quantum cryptography with satellites

Coherent States Quantum Key Distribution

Quantum channel 0

e e —

Classical channel

* Essential feature : quantum channel with non-commuting quantum observables
-> not restricted to single photon polarization or phase !

-> Design of Continuous-Variable QKD protocols where :
* The non-commuting observables are the quadrature operators X and P
* The transmitted light contains weak coherent pulses (about 10 photons)
with a gaussian modulation of amplitude and phase
* The detection is made using shot-noise limited homodyne detection




Coherent States Quantum Key Distribution

QKD protocol using coherent states with
gaussian amplitude and phase modulation

Homodyne Counting (APD)

Efficiency > 90% 10-50 % ) o ) ) ) ) )

Dark rate negligible problem Efficient transmission of information using continuous variables ?

Bits/pulse may be > 1 <1 -> Shannon's formula (1948) : the mutual information I, 5 (unit : bit / symbol) for

ALICE |- a gaussian channel with additive noise is given by
f - Reminder : I(X;Y) =
Pulsed 1 =1/2 log, [ 1+ V(signal) / V(noi } HX) - HX 1Y) =
laser 1y [ AB og2 L1+ Visignah /Vmoise) 1 | pyy) v x) =
4 HX) + H(Y) - HX; Y)
, BOB = ,
Amplitude . o
and phase Optical ﬁ (a) Alice chooses X, and P, within
modulation fiber two random gaussian distributions. (s
50/50 + Low-noise . A
g (b) Alice sends to Bob the
e D/ - amplifier coherent state | X, +i P, > v
= 5 A A A
Signal Photodiode (c) Bob measures either X or Py
Attenuation ) ) )
Local Oscillator V' Phase control : (d) Bob and Alice agree on the basis choice
NS (classical) "\ Measurement of X or P (X or P), and keep the relevant values.
VA
Data Reconciliation Data Reconciliation
how to correct errors, revealing as less as possible to Eve ?
_-PiN £ IBE

Quantum channel

>
Classical channel )
-7 B
----- | Y

Main idea (Csiszar and Korner 1978, Maurer 1993) :

Alice and Bob can in principle distill, from their correlated key elements, a
common secret key of size S > sup(I, - I, I - Izg) bits per key element.

Crucial remark : it is enough that I, is larger than the smallest of I, and I
(i.e. one has to take the best possible case).

Y‘_J ‘. % - “‘*-;‘;‘>
Quantum channel ‘\;.
Classical channel /

7

If I, is the smallest, the reconciliation If I is the smallest, the reconciliation
must keep S =1, - I, constant : must keep S =1, - Iz constant :
Alice gives correction data to Bob Bob gives correction data to Alice

(and also to Eve), (and also to Eve),
and Bob corrects his data : and Alice corrects his data :
« direct reconciliation protocol » « reverse reconciliation protocol »

Crucial question for Alice and Bob :
how to bound I,,;; and I, knowing I, ?




. . - g
~ Direct reconciliation J
Institut d'Optique B
Bounding I, (F. Grosshans and P. Grangier, PRL 88, 057902 (2002) ).
Ing=1/2 log, [1+V,/(Nyg+Nggp) |

Lyp=12 log, [1+V,/(Ny+Neg) |

where V,: variance of Alice” s modulation
Ny :  shot noise (coherent state) . o
. . y ee e.g.:
Nqu D« eqU{Valent channel no%se » on Bob, S S}de} P. Grangier et al.,
Nqu : « equivalent channel noise » on Eve * s side Nature 396
537 (1998).

From Heisenberg Nqu Nqu > N02 (no cloning !) and thus :

[ Lig = (Lp)pet = 12 log2[1+VA/(N0+N02/Nqu)]]

Keysize : S=1,5- (g )pest

;" Reverse Reconciliation A
Institut d'Optique B

QlpPc

Bounding I;; (F.Grosshans etal., Nature 421,238 (2003) )

How well can Alice and Eve infer Bob’ s measurement results ?
Define the « conditional variance » V(X1 X}) = V(Xp) - <X, X >/ V(X})

Conditional variances are also bounded by Heisenberg relations :

VXX )i VPP = N2 V(PyIP,),in VX Xp) = Ng?

Using again Shannon’s theorem... (and some algebra...)

[ Ipp = (g )y = 172 logz[T2(Nqu+N0+VA)/(Nqu+N02/(N0+VA))]]

Key size : S =1,5 - (Igg )yest

% Summary on reconciliation protocols %ﬁ J

Institut d'Optique

QlpPcC

The noise seen by Bob can be split in two parts (known by Alice and Bob !):

[ Nqu = Nlosses + Nexcess = NO a- Tline) / Tline + Nexc ]

Mutual information (bits / symbol) for V,=15 N,

o
2

15 I \Emax — Ls 1.5 I Emax [ ../ L
1 1 IBEmax
IBEmax
0.5 05
Neze =0 - N = 025N,
0 line 0 I Tine
0.25 0.5 0.75 1 025 0.5 075 1

* 1, : relevant for direct reconciliation, requires T, > 0.5 and N, <N,
* Ip : relevant for reverse reconciliation, requires N, . < 0.5 N,
can be secure for any line transmission !

Reconciliation of correlated Gaussian variables

= Each level has a different
1 * error rate

= Non-independent levels

— Error correction
performed using multi-
level iterative soft

0 decoding with LDPC codes

1 01 01 01 01 0 10O

G. Van Assche et al, IEEE Trans. on Inf. Theory 50, 394 (2004)
M. Bloch et al, arXiv:cs.IT/0509041 (2005)

400,000 ~10,000
= Standard privacy
amplification based on
universal hash functions

= Small processing time




Security of coherent state CV-QKD : collective attacks

Alice-Bob mutual information : I,5

Eve-Bob mutual information :

Igk (Shannon : individual
attacks)

xge (Holevo : collective attacks)

v\lshannon 74

Secret key generation rate (bit/symbol)

05+ ‘,v/«"'jlholevo
o Secret Key Rate :
o Al = I, - Iz (Shannon)
% o2 0.4 0.6 0.8 1 Al = I,5 - Xgg (Holevo)

Transmission T

= For both individual and collective attacks Gaussian attacks are optimal
— Alice and Bob consider Eve’ s attacks Gaussian and estimate her
information using the Shannon quantity Iz, or the Holevo quantity ygzg

Fig : V, = 21 (shot noise units) M. Navasqués et al, Phys. Rev. Lett. 97, 190502 (2006)
£=0.005 (shot noise units), n = 0.5 R. Garcia-Patrén et al, Phys. Rev. Lett. 97, 190503 (2006)

Error correcting codes efficiency

Error correction with LDPC codes, efficiency 3

AT = BIap — xBE

Individual attacks

----- p=1
- 350 kHz
raw rate

10° p=0895
80 kHz

nel rate || 380 kHz

05 \| effective rate

Secret key generation rate (bit/symbol)
Secret key generation rate (bit/s)

0 02 o4 06 08 1 0 10 20 8 4 50 60 70
Transmission T Distance (km)

Imperfect correction efficiency induces a limit to the secure distance

Security Proofs of CVQKD : summary

Secret bit rate K (bits/pulse) for information-theoretic security (Devetak, Winter, Renner... ) :

K=Plas- Xee

IAB= Shannon’ s mutual information obtained by Alice and Bob after the quantum exchange.

For a Gaussian modulation with variance V(signal)

| Ixg =% Log,[ 1 +V(signal)/V(noise)] =% Log,[ 1 + SNR]

[> = « Reconciliation efficiency » : fraction of I, that Alice and Bob can really extract after
binarization of the data and error correction (difficult for low SNR !).

| Using very good / state-of-the-art error correcting codes (LDPC) one gets 3 up to 95 %

X ge = Holevo information between Eve and Bob (« reverse reconciliation »)

Basic tool : Gaussian optimality (Cerf, Cirac...) : for a given transmission and noise of
the channel, the best possible attack by Eve is a Gaussian attack : then the Holevo
quantity can be calculated easily from the channel covariance matrix.

NB : This proof and formula are valid in the "asymptotic limit" of Alice and Bob exchanging an
infinite amount of data. For a (more realistic) finite amount of data, the security proofs must
use other techniques (smooth min entropy, introduced by Renato Renner).

See e.g. A. Leverrier et al, Phys. Rev. Lett. 110, 030502 (2013) & 114, 070501 (2015)
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Attacks considered in our proof are individual gaussian attacks (not easy !)

Alice R [ Bob  Alice | R \

[T i

Bob

Eve’ s best attack against
direct reconciliation :
cloning machine ( = BS)
+ quantum memory
Negs = (T/R) N,
Nege = R/T) N,

Eve " s best attack against
reverse reconciliation :
« entangling cloner »
+ quantum memories




Security of coherent state CV-QKD protocol

Security initially proven against (arbitrary) individual attacks
F. Grosshans et al, Nature 421, 238 (2003)

=

F. Grosshans and N. J. Cerf, Phys. Rev. Lett. 92, 2

047905 (2004)

Then security proven against arbitrary collective attacks :
F. Grosshans, Phys. Rev. Lett. 94, 020504 (2005

M .‘"-.‘.'-.l:.lll;‘\JIIvA.l.'\ Acimn, Phys. Rev. Lett. 94, 020505 (2005)

For both individual and collective attacks Gaussian attacks are optimal
— Alice and Bob consider Eve's attacks Gaussian and estimate her
information using the Shannon quantity [, or the Holevo quantity y,

> i

asques et al, Phys. Rev. Lett. 97, 190502 (2006)

M. N

R. Garcia-Patron et al, Phys. Rev, Lett. 97, 190503 (2006)

* Finite size effects (needed for real experiments!) :
A. Leverrier, F. Grosshans and P. Grangier, Phys. Rev. A 81, 062343 (2010)
P. Jouguet, S. Kunz-Jacques, E. Diamanti, A. Leverrier, Phys. Rev. A 86, 032309 (2012)

* Coherent attacks and composable security proofs :
R. Renner and J.I. Cirac, Phys. Rev. Lett. 102, 110504 (2009)
E. Furrer et al, Phys. Rev. Lett. 109, 100502 (2012)
A. Leverrier et al, Phys. Rev. Lett. 110, 030502 (2013)
Anthony Leverrier, Phys. Rev. Lett. 114, 070501 (2015)

All-fibered CVQKD @ 1550 nm EBSECOQC

Photodiode

Alice . (
[ =
l:_/- = Faraday
2 s (00 & mirror
dLbgdes, Signal Polarizer —Y— ~—Y ¥ M 340 m
00 1 =+ Amplitude Phase Amplitade -’ -
Modulator [ Moduator || Modalatar [~ -
Local oscdllatoe \ J X J PBsS SO50
( ) Coupler
1.55 pm pulsed I 2
laser diode > -y m—
991 Coupler Polarizer PBS
¥ M)
(&3 . Bob Channel
A= |
50'50 Faraday Dynamic
Homodyne Countes 10 mimor Lo
detection e s 40 m — X g P
l Phase l 't {

v Modulator

A

f|

PBS

1

=
=

Field test of a continuous-variable quantum key distribution prototype
S Fossier, E Diamanti, T Debuisschert, A Villing, R Tualle-Brouri and P Grangier
New J. Phys. 11 No 4, 04502 (April 2009)

All-fibered CVQKD @ 1550 nm R SECOQC
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Homodyne detection

Time multiplexing

Quantum Back-Bone demonstrator OO
SECOQC, Vienna, 8 october 200808 G4>ECOQC]

yPAogy by

Real-size demonstration of a secure quantum cryptography network
by the European Integrated Project SECOQC, Vienna, 8 october 2008
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The SECOQC Quantum Back Bone | fBSECOQC

Real-size demonstration of a secure quantum cryptography network
by the European Integrated Project SECOQC, Vienna, 8 october 2008
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Secure Encryption with QUantum key REnewal

® Combining QKD (1 kbit/sec) with fast symmetric encryption (1 Gbit/sec)
B Use 128 bits AES, change key every 10 seconds

Cfmy Thales Com (Mistral)
s ORI i I it ,
E Infraos!Kan:ture Telecom ParisTech !
'secret key rate
11 kbit/sec at 25 10GS ’
: km Thales R&T
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Symmetric Encryption with QUantum key REnewal

Complete set-up

B Thales : Mistral Gbit
(fast dedicated AES encryptor)

User window :
« sequre drag
and drop »
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Field implementation

B Fibre link : Thales R&T (Palaiseau) <-> Thales Raytheon Systems (Massy)
B Fiber length about 12 km, 5.6 dB loss
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Results

On site, 12 km distance, 5.6 dB loss
Minimal direct action on hardware (feedback loops, remote control)

Key rate (bit/sec)
1200

Air conditioning failure
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See http://www.demo-sequre.com
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Implementation of coherent states CV-QKD

Fibered device : 1550 nm, only telecom components (no photon counters !),
Range 80 km: P. Jouguet et al, Nature Photonics 7, 378 (2013)

Optimized error correction, Graphic Processing Units (GPU) rather than CPU
=> Lot of calculations, but they do not limit the secret bit rate !
=> Up to 95% of Shannon's limit for any SNR : longer distance

signal
Local Oscillator
Signal + L0

L: Laser
FM: Faraday Mirror S€0upg,, o
PIN: PIN photodiode
PM: Phase Modulator
AM: Amplitude Modulator
VATT: Variable Attenuator
PBS: Polarization Beam Splitter
DPC: Dynamic Polarization Controller

CYGNUS (commercial product)

ISEBURENET)

A QUANTUM KEY TO NETWORK SECURITY
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¢ Several recent exemples of “quantum hacking” (e.g. Vadim Makarov et al.)
* Exploits weaknesses in single photon detectors

e Will NOT work against CVQKD (PIN photodiodes, linear regime)

e Hackers will have to work harder...

e ... and Trojan attacks will not make it (work under way, SQN + U. Erlangen)
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