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1. The EPR “paradox” and Bell’s inequalities (Lecture 1).

Let us consider two spin 1/2 particles in the singlet state :

|ψ〉 =
1√
2

(|+z, −z〉 − |−z, +z〉)

The spin operators of the two particles are denoted as ~σ1 = ~S1/(h̄/2) and ~σ2 = ~S2/(h̄/2). The kets
|ε1z, ε2z〉 denote the joint eigenstates of σ1z, σ2z, with the eigenvalues ε1z = ±1, ε2z = ±1. Let us
assume that the two particles are spatially separated, so it is possible to measure independantly any
spin component for each particle.

The eigenstates |±~u〉 of a spin measurement along the unit vector ~u, with polar angles θ and φ in
spherical coordinates, are given by :

|+~u〉 = cos(θ/2)e−iφ/2|+z〉+ sin(θ/2)eiφ/2|−z〉

|−~u〉 = − sin(θ/2)e−iφ/2|+z〉+ cos(θ/2)eiφ/2|−z〉

1. Let us assume that the two particles move in opposite directions along the axis Oy. Calculate the
expression of |ψ〉 in a basis |ε~a, ε~b〉 of eigenstates |±~a〉 for particle 1 et |±~b〉 for particle 2, where ~a and
~b are two unit vectors in the plane xOz (φ1 = φ2 = 0), corresponding to the angles θ1 et θ2.

2. One performs an instantaneous measurement of σ1a = ~σ1.~a and σ2b = ~σ2.~b of the spin compo-
nents along the unit vectors ~a and ~b.

a. What are the 4 possibles results, and the probabilities of these results ?
b. What are the possibles results if one considers one particle only ? What are the probabilities

of these results ?
c. What is the conditional probability to get the result +1 for particle 2, knowing that the

measurement on particle 1 has given the result −1 ?
d. Assuming ~a = ~b, show that the measurement result for one spin is perfectly determined by the

measurement result for the other spin. Find again this conclusion by using the “reduction of the wave
packet” postulate. What can be said about the correlation between these measurements results ?

e. Show that the average value in state |ψ〉 of the product of results EQ(~a,~b) = 〈ψ|σ1aσ2b|ψ〉 is

given by : EQ(~a,~b) = −~a.~b. What is the physical meaning of |EQ(~a,~b)| = 1 ?

3. Bell’s inequalities (1964) : Einstein, Podolsky and Rosen argued in 1935 that when two particles
are far enough of each other, the value of the spin for each particle must have a determined value,
independant from any measurement realized on the other particle. Following this idea, John Bell built
a very general model in which there might be a “hidden variable” λ, determining the results ±1 for
the separate (and remote) measurements of σ1a and σ1b, using two “sign” functions :

A(λ,~a) = ±1, B(λ,~b) = ±1

This model is “local”, because A(λ,~a) does not depend on ~b, neither B(λ,~b) on ~a. Denoting P (λ) the
probability distribution of the variables λ, normalized as

∫
dλP (λ) = 1, one has thus :

EC(~a,~b) =

∫
dλP (λ)A(λ,~a)B(λ,~b)
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(i) Considering the 4 vectors ~a, ~a′, ~b, ~b′, one defines :

s(λ) = A(λ,~a)B(λ,~b)−A(λ,~a)B(λ,~b′) +A(λ,~a′)B(λ,~b) +A(λ,~a′)B(λ,~b′)

Show that s(λ) = ±2. Hint : write s(λ) as(
A(λ,~a) +A(λ,~a′)

)
B(λ,~b)−

(
A(λ,~a)−A(λ,~a′)

)
B(λ,~b′)

and look at the different possible values of A(λ,~a)±A(λ,~a′).
(ii) Using the above, demonstrate Bell’s inequality : |SC | ≤ 2 with

SC = EC(~a,~b)− EC(~a,~b′) + EC(~a′,~b) + EC(~a′,~b′)

4. Conflict between Quantum Mechanics and Hidden Variables Theories. Consider the choice of angles
given on the figure below :

θ θ
θ

a b
a'

b'

(i) Show that :

SQ = EQ(~a,~b)− EQ(~a,~b′) + EQ(~a′,~b) + EQ(~a′,~b′)

can be written as : SQ = cos(3 θ)− 3 cos(θ).
(ii) Show that there is a conflict between the calculated predictions for SQ and
SC for some values of θ. Conclusion ?

2. QND measurement of a spin component (Lecture 2).

On wants to perform a measurement on a qubit “a” by using an indirect (rather than direct) mea-
surement, called a “Quantum Non Demolition” (QND) measurement. For instance, if the qubit is a
spin 1/2 particle, one will not use a Stern-Gerlach magnet, but rather get the spin “a” to interact with
another spin “b” during a time τ , and read out the result on spin “b”. For this purpose, let us denote
~σa,b = ~Sa,b/(h̄/2) the spin observables for the two qubits, and |az : ±1〉, |bz : ±1〉 the eigenstates of
the observables σaz and σbz. After the interaction, one measures (directly) the state of qubit b, and
one wants to infer the states of qubit a.

1. Let us denote |ax : ±1〉 et |ay : ±1〉 the eigenstates of σax et σay. Write down these states in
the basis {|az : ±1〉}. Write also the expression of |ax : ±1〉 as a function of |ay : ±1〉 .

2. We assume that the qubits are motionless (e.g. they are trapped), and that their interaction
is described by the hamiltonian Hm = h̄g σaz σbx/2, acting during a duration τ . All other effects
will be negelected during the interaction time. Show that Hm, σaz and σbx are commuting operators.
Write down their eigenstates, and give the corresponding eigenvalues.

3. Let us assume that the initial state of the pair of qubits is |ψ+(0)〉 = |az : +〉 ⊗ |by : +〉, and
adjust the duration of the interaction so that gτ = π/2. Calculate the system’s final state |ψ(τ)〉.
Answer the same question if the initial state is |ψ−(0)〉 = |az : −〉⊗ |by : +〉. Give an interpretation of
these results by considering the expression of Hm and Bloch’s sphere for the qubit b, in the two cases
where the qubit a is in either of the two states {|az : ±1〉}.

4. Starting from the initial state |ψ(0)〉 = (α|az : +〉 + β|az : −〉) ⊗ |by : +〉, one measures the
spin component of qubit b along Oz, after the interaction has been carried out and turned off.
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What are the possible results, and what are their probabilities ? After this measurement, what
can be said about the component along Oz for qubit a ? Justify the name “QND measurement” given
to this kind of process.

3. Schmidt decomposition (Lecture 2, density matrix)

One considers two quantum systems (e.g. two particles) described in two Hilbert spaces EA et EB.
The most general state of the particles pair is :

|ψAB〉 =
∑
i,j

cij |ui〉A|vj〉B

where {|ui〉A} et {|vj〉B} are orthogonal and normalized basis of EA and EB.

1. Show that one can write |ψAB〉 =
∑

i |ui〉A|wi〉B and give the expression for |wi〉B.

2. Let us consider the density operator ρ = |ψAB〉〈ψAB| for the two particles, and define the reduced
density operators : ρA = TrB(ρ), and ρB = TrA(ρ). Give the expression for ρA as a function of
the scalar products 〈wi|wj〉.

3. Let us assume that ρA is diagonal in the basis {|ui〉A}, i.e. one has :

ρA =
∑
i

pi (|ui〉|〈ui|)A.

Show that the vectors {|wj〉B} are orthogonal. What is the value of the modulus |wj〉B ?

4. Show that |ψAB〉 =
∑

i

√
pi |ui〉A|w̃i〉B where {|w̃j〉B} is a normalized orthogonal basis, to be

specified.

5. This expression is called the Schmidt decomposition of the pure state |ψAB〉. Using this de-
composition, give a simple expression for ρB, and show that ρA et ρB have the same non-zero
eigenvalues. The number of non-zero eigenvalues is called the Schmidt number.

6. The pure state |ψAB〉 is separable iff it can be written as a factorized expression |ψAB〉 = |φA〉|χB〉.
A non-separable state is entangled. Show that a state is separable iff the Schmidt number is
equal to one. The Schmidt number is a (rough) measure of entanglement.

4. Security of quantum cryptography. (Lecture 3)

The goal of this exercice is to establish a proof of the security of quantum cryptography, inspired
from an article by F. Grosshans and N. Cerf (arXiv:quant-ph/0311006). This is not the most
general and powerful proof currently available, but it gives a good feeling of the issue. The proof
relies on two theorems, that we will not demonstrate;

(a) a theorem by Csiszar and Körner : If a quantum protocol provides mutual quantum infor-
mations IAB and IBE between Alice, Bob and Eve, then Alice and Bob can use classical
data processing to distill a secret key with size

∆I = IAB − IBE

One is using IBE rather than IAE because the distillation of the key includes the information
about which photons were actually received by Bob. This is called an “inverse reconciliation
protocol” because quantum and classical informations are going in opposite directions (Alice
to Bob for quantum, and Bob to Alice for classical).
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(b) the “entropic Heisenberg inequalities” (arXiv:quant-ph/0110025): If Bob measures two
(generally non-commuting) observables BX et BY on a system described by a density
matrix ρ, the Shannon entropies associated with these measurements are constrained by :

H(BX |ρ) +H(BY |ρ) ≥ −2 log2 c

where c = maxi,j |〈xi|yj〉| is the maximum value of the overlap between the eigenstates of
BX et BY . This inequality is physically very close to the usual Heisenberg inequalities, but
it involves entropies rather than variances. .

Let us consider a statistical ensemble A of quantum states prepared by Alice and sent to Bob.
The eavesdropper Eve will attack the communication by entangling ancilla qubits with the qubits
sent by Alice, in order to extract the maximum amount of information.

This situation can be studied by assuming (without loss of generality) that Alice, Bob et Eve
share a tripartite entangled pure state |Ψ〉. Rather than sending a qubit to Bob, Alice performs a
measurement on her own part of |Ψ〉. The random (classical) result that she obtains corresponds
to the random choice she would have for sending a qubit to Bob. The two approaches (either
“prepare and measure scheme”, or “entangled scheme”) are thus completely equivalent, because
Alice owns the same information in both cases, and the density matrix seen by Eve and Bob is
also the same in both cases.

(a) Assuming that Bob measures the observable BX , write down the mutual informations IBA
et IBE as a function of Bob’s entropy H(BX) and of the conditional entropies H(BX |A) et
H(BX |E). Calculate the secret bit rate ∆I as a function of the conditional entropies.

(b) The measurements done by Alice and (maybe) by Eve project the initial entangled state
on a new state which Bob will receive. Using the entropic Heisenberg inequalities, find a
lower bound for the sum H(BX |E) + H(BY |A) of conditional entropies corresponding to
the measurements carried out respectively by Eve and Alice.

(c) Using the previous result find a lower bound for ∆I without using IBE , which is unknown
by Alice and Bob. Since the observables BX et BY play the same role in the protocol, one
will assume that H(BX |A) = H(BY |A) = H(B|A).

(d) Calculate c for the BB84 protocol where the exchanged quantum system is a polarized
photon, with possible polarization orientations 0, 45, 90, 135 degrees. Deduce the security
condition for BB84, expressed as a function of the mutual information IAB.

(e) Calculate IAB as a function of the binary entropy H(e) when the error rate of the trans-
mission line is e. Deduce a condition on the error rate e to be able to exchange a secret key
through the transmission line.
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