Cold molecular ion RbBa⁺

Xiaodong Xing

Laboratoire Aimé Cotton, CNRS, Université Paris-Sud, ENS Cachan, Université Paris-Saclay, Orsay, France

Doppler cooling of Ba+ ions: **493** nm, **685** nm and **986** nm lasers. J. H. Denschlag Dipole trap: 1064 nm laser.

BaRb⁺ + hv →Ba + Rb⁺/ Rb + Ba⁺ BaRb⁺ + Rb →Ba⁺ + Rb₂ / Rb⁺ + BaRb/ Rb₂⁺ + Ba

BaRb⁺ + hv \rightarrow Ba + Rb⁺/ Rb + Ba⁺ BaRb⁺ + Rb \rightarrow Ba⁺ + Rb₂ / Rb⁺ + BaRb/ Rb₂⁺ + Ba

Possible reactions

Two body collisions:

 $Rb + Ba^+ \rightarrow BaRb^+$

Three body collisions

 $Rb + Rb + Ba^+ \rightarrow BaRb^+ + Rb$

Photodissociation:

 $BaRb^+ + hv \rightarrow Ba + Rb^+/Rb + Ba^+$

Binary and Ternary reaction-rate constants

 $K_2 < 9 \times 10^{-14} cm^3 s^{-1}$ $K_3 = 1.02(1) \times 10^{-24} cm^6 s^{-1}$

A. Krukow, A. Mohammadi, A. Harter and J. H. Denschlag Phys. Rev. A 94, 030701(R) (2016)

Possible reactions

- **Two body collisions:**
- $Rb + Ba^+ \rightarrow BaRb^+$
- Three body collisions:
- $Rb + Rb + Ba^+ \rightarrow BaRb^+ + Rb$
- **Photodissociation:**
- $BaRb^+ + hv \rightarrow Ba + Rb^+/Rb + Ba^+$

Possible reactions

Two body collisions:

 $Rb + Ba^+ \rightarrow BaRb^+$

Three body collisions:

 $Rb + Rb + Ba^+ \rightarrow BaRb^+ + Rb$

Photodissociation:

 $BaRb^+ + hv \rightarrow Ba + Rb^+/Rb + Ba^+$

Hot Ba⁺ in Hund's case a

Hot Ba⁺ in Hund's case c

Hot Ba⁺ in Hund's case a

Hot Ba⁺ in Hund's case c

Potential energy curves calculated by Romain Vexiau

 A. Krukow, A. Mohammadi, A. Harter and J. H. Denschlag Phys. Rev. A 94, 030701(R) (2016)
A. Krukow, A. Mohammadi, A. Harter and J. H. Denschlag Phys. Rev. Lett. 116, 193201 (2016)

weakly-bound BaRb⁺

Ion: 0.1 ~10 mk $k_{\rm B}$ atom: 10 μ k $k_{\rm B}$

entrance channel

 ${}^{87}\text{Rb}(5s) + {}^{87}\text{Rb}(5s) + {}^{138}\text{Ba}^+(6s)$ collisions performed with Rb atomic densities of around 10^{12} cm^{-3} [1,2], where RbBa⁺ is **weakly-bound** on ${}^{1}\Sigma^{+}$ or ${}^{3}\Sigma^{+}$

 A. Krukow, A. Mohammadi, A. Harter and J. H. Denschlag Phys. Rev. A 94, 030701(R) (2016)
A. Krukow, A. Mohammadi, A. Harter and J. H. Denschlag Phys. Rev. Lett. 116, 193201 (2016)

weakly-bound BaRb⁺

Ion: 0.1 ~10 mk $k_{\rm B}$ atom: 10 μ k $k_{\rm B}$

entrance channel

 87 Rb(5s) + 87 Rb(5s) + 138 Ba⁺(6s) collisions performed with Rb atomic densities of around 10^{12} cm⁻³ [1,2], where RbBa⁺ is **weakly-bound** on $^{1}\Sigma^{+}$ or $^{3}\Sigma^{+}$

 A. Krukow, A. Mohammadi, A. Harter and J. H. Denschlag Phys. Rev. A 94, 030701(R) (2016)
A. Krukow, A. Mohammadi, A. Harter and J. H. Denschlag Phys. Rev. Lett. 116, 193201 (2016)

State-to-state absorbing cross section

$$\sigma_{v} = \frac{4\pi^{2}}{3C} hv |\langle \Lambda_{f}, E_{cont} | D (r) | \Lambda_{i}, v \rangle|^{2}$$

 $(2)^{1}\Sigma^{+}$ - $(4)^{1}\Sigma^{+}$ dominated

Theoretical data: 13.5×10⁻²⁰ cm²×($E_{\rm b}$ /(K× $k_{\rm B}$))^{0.75}

Experimental data: $340 \times 10^{-20} \text{ cm}^2 \times (E_b/(\text{K} \times k_B))^{0.75}$ State-to-state absorbing cross section

$$(2)^{1}\Sigma^{+} - (4)^{1}\Sigma^{+}$$
 V = -4, E_b = 0.86 mk k_B

State-to-state absorbing cross section

$$(2)^{1}\Sigma^{+} - (4)^{1}\Sigma^{+}$$
 V = -4, E_b = 0.86 mk k_e

State-to-state absorbing cross section for Artifical (4)¹Σ⁺

Hot Ba⁺ in Hund's case a

Hot Ba⁺ in Hund's case c

 $\mathbf{\Omega} = \mathbf{3} \quad H = (A + V({}^{3}\Delta_{u}))$

$$\begin{split} \Omega &= 2 \quad H^{=} \begin{pmatrix} V(^{3}\Delta_{u}) & A & \frac{A}{\sqrt{2}} \\ A & V(^{1}\Delta_{u}) & -\frac{A}{\sqrt{2}} \\ \frac{A}{\sqrt{2}} & -\frac{A}{\sqrt{2}} & V(^{3}\Pi_{u}) + \frac{A}{2} \end{pmatrix} \\ \Omega &= 1 \quad H^{=} \begin{pmatrix} V(^{3}\Delta_{u}) - A & \frac{A}{\sqrt{2}} & \frac{A}{\sqrt{2}} & 0 \\ \frac{A}{\sqrt{2}} & V(^{3}\Pi_{u}) & \frac{A}{2} & \frac{\sqrt{3}A}{2} \\ \frac{A}{\sqrt{2}} & \frac{A}{\sqrt{2}} & V(^{1}\Pi_{u}) & -\frac{\sqrt{3}A}{2} \\ 0 & \frac{\sqrt{3}A}{2} & -\frac{\sqrt{3}A}{2} & V(^{3}\Sigma_{u}^{*}) \\ 0 & \frac{\sqrt{3}A}{2} & -\frac{\sqrt{3}A}{2} & V(^{3}\Sigma_{u}^{*}) \\ \Omega &= 0^{+} H^{=} \begin{pmatrix} V(^{3}\Pi_{u}) - \frac{A}{2} & A\sqrt{\frac{3}{2}} \\ A\sqrt{\frac{3}{2}} & V(^{1}\Sigma_{u}^{*}) \end{pmatrix} \\ \Omega &= 0^{-} \quad H^{=} \begin{pmatrix} V(^{3}\Pi_{u}) - \frac{A}{2} & A\sqrt{\frac{3}{2}} \\ A\sqrt{\frac{3}{2}} & V(^{3}\Sigma_{u}^{*}) \end{pmatrix} \end{split}$$

J. Lozeille, A. Fioretti, C. Gabbanini, Y. Huang, O. Dulieu et al. Eur. Phys. J. D. 39, 261-269 (2006)

Hund's case C Potential Energy Curves

 $\mathbf{\Omega} = \mathbf{3} \quad H = (A + V({}^{3}\Delta_{u}))$

$$\begin{split} \Omega &= 2 \quad H^{=} \begin{pmatrix} V(^{3}\Delta_{u}) & A & \frac{A}{\sqrt{2}} \\ A & V(^{1}\Delta_{u}) & -\frac{A}{\sqrt{2}} \\ \frac{A}{\sqrt{2}} & -\frac{A}{\sqrt{2}} & V(^{3}\Pi_{u}) + \frac{A}{2} \end{pmatrix} \\ \Omega &= 1 \quad H^{=} \begin{pmatrix} V(^{3}\Delta_{u}) - A & \frac{A}{\sqrt{2}} & \frac{A}{\sqrt{2}} & 0 \\ \frac{A}{\sqrt{2}} & V(^{3}\Pi_{u}) & \frac{A}{2} & \frac{\sqrt{3}A}{2} \\ \frac{A}{\sqrt{2}} & \frac{A}{\sqrt{2}} & V(^{1}\Pi_{u}) & -\frac{\sqrt{3}A}{2} \\ 0 & \frac{\sqrt{3}A}{2} & -\frac{\sqrt{3}A}{2} & V(^{3}\Sigma_{u}^{*}) \\ 0 & \frac{\sqrt{3}A}{2} & -\frac{\sqrt{3}A}{2} & V(^{3}\Sigma_{u}^{*}) \\ \Omega &= 0^{+} H^{=} \begin{pmatrix} V(^{3}\Pi_{u}) - \frac{A}{2} & A\sqrt{\frac{3}{2}} \\ A\sqrt{\frac{3}{2}} & V(^{1}\Sigma_{u}^{*}) \end{pmatrix} \\ \Omega &= 0^{-} \quad H^{=} \begin{pmatrix} V(^{3}\Pi_{u}) - \frac{A}{2} & A\sqrt{\frac{3}{2}} \\ A\sqrt{\frac{3}{2}} & V(^{3}\Sigma_{u}^{*}) \end{pmatrix} \end{split}$$

J. Lozeille, A. Fioretti, C. Gabbanini, Y. Huang, O. Dulieu et al. Eur. Phys. J. D. 39, 261-269 (2006)

J. Lozeille, A. Fioretti, C. Gabbanini, Y. Huang, O. Dulieu et al. Eur. Phys. J. D. 39, 261-269 (2006)

$$(2)^{1}\Sigma^{+} - (4)^{1}\Sigma^{+}$$

Hund's case A

Hund's case A

Hund's case C

Thanks