DE LA RECHERCHE À L'INDUSTRIE

CO₂ AND BIOMASS CONVERSION: SCIENTIFIC CHALLENGES AND OPPORTUNITIES

CEA / CNRS | Thibault Cantat

www.cea.fr

CARBON SOURCES HAVE DIFFERENT ENERGY CONTENTS

Carbon feedstocks

C oxidation state -IV Hydrocarbons, -11 gas, coal 0 +11 +IV

Applications

Fossil carbon fuels

80% of the world energy portfolio

Chemicals

95% of organic chemicals derive from fossil feedstocks

A paradigm shift: oxidation vs reduction

CO₂ EMISSIONS – FIGURES WORLDIDE

World CO₂ emissions by industry

Source: IEA

CO₂ SOURCING TODAY

Guidelines

- High CO₂ content in raw gas (>90% of CO₂) preferable due to energy penalties by concentration
- Small amount of contaminants
- Long term commitment with raw CO₂ supplier
- Reliable raw CO₂ source
- Favorable logistics

CO₂ UTILIZATION TODAY

CO₂ SOURCING TODAY

Ammonia

As byproduct from hydrogen production for the Haber-Bosch process

(e. g. steam reforming of hydrocarbons)

$$CH_4 + 2 H_2O = CO_2 + 4 H_2$$

- High CO_2 content in raw gas (>98% of CO_2)
- High reliability
- Low on contaminants
- Often placed in industrial zones, close to large consumers
- Approximately half of European merchant CO₂ supply
- Approximately 70% of world captive use (urea)

~2% of the world's annual energy supply

CO₂ SOURCING TODAY

Ammonia

CO₂ AS AN ENERGY VECTOR

CO₂ reduction: recycling to fuels

CO₂ hydrogenation for hydrogen storage

CO₂ to formic acid

CO₂ to methanol

H₂ + CO₂ + base [HCO₂-,baseH⁺]

H⁺

Use in tue cells

Use in tue leads

[HCO₂-,baseH⁺]

■ CO₂ electro- and photoelectrocatalytic reduction to CO, formic acid, methanol, etc.

CO₂ TO FUELS: ALREADY INDUSTRIALIZED?

Limited short terms opportunities

European Directives:

- Renewable Energy Directive
- Fuel Quality Directive

INDUSTRIAL PROCESSES UTILIZING CO₂

Industrial routes from CO₂

Bosch-Meiser process for urea production

$$2 \text{ NH}_3 + \text{CO}_2 \xrightarrow{\text{fast}} \left[\text{H}_2 \text{N} - \text{C}_2^{\text{O}} \xrightarrow{\text{O}} \text{NH}_4 \right] \xrightarrow{\text{s/ow}} \text{H}_2 \text{N} \xrightarrow{\text{C}} \text{NH}_2 + \text{H}_2 \text{O}$$

$$160-200 \text{ °C} \text{ urea}$$

$$100-400 \text{ bars}$$

$$120 \text{ Mt/y}$$

Inorganic carbonates

Synthesis of cyclic and polymeric carbonates

$$R + CO_2 \xrightarrow{\text{cat.}} + CO_2 \xrightarrow$$

CO₂ TO VALUE ADDED CHEMICALS

Market opportunities with no significant impact on CO₂ emissions

Cantat et al., Green Chem. 2015, 17, 157.

CHEMICAL TRANSFORMATION OF CO₂

Two energetic challenges: thermodynamic and kinetic

A DIAGONAL APPROACH

VARIOUS OPPORTUNITIES TO CO₂ RECYCLING...

Objective: develop efficient and viable catalytic processes

PROOF-OF-CONCEPT: NEW CATALYTIC PROCESS

Proof-of-concept for the diagonal approach

- -Cover picture in Angewandte Chemie
- -Very Important Paper
 (top 5%)
- -Highlighted in Nature

World production: 500 kt/y from oil Utilization as solvents and reactants

 CO₂ as an alternative to petrochemistry Utilization of an energy vector (H, Si) coupled with a functionalizing reactant

CONVERGENT REDUCTIVE DEPOLYMERIZATION

LIGNIN REDUCTION TO CHEMICALS

Lignin reductive depolymerization

CEA Technology: CALRED Process

Production of analytically pure aromatic compounds (catechols) from wood

CO₂ DYNAMIC

Interaction between policy instruments

THE VALUE OF CO₂

- Market vision
- Innovation in CO₂ reduction

- Basic research
- Applied research
- Co-developments

RECYCLING STRATEGIES

REWEAR

CLOTHING THAT CAN BE WORN AGAIN IS MARKETED WORLDWIDE AS SECOND-HAND GOODS.

ENERGY

WHEN REWEAR, REUSE AND RECYCLE ARE NOT OPTIONS, TEXTILES ARE USED TO PRODUCE ENERGY.

REUSE

TEXTILES THAT ARE NO LONGER SUITABLE TO WEAR ARE CONVERTED INTO OTHER PRODUCTS, SUCH AS CLEANING CLOTHS.

RECYCLE

TEXTILES THAT CAN'T BE REUSED GET A
NEW CHANCE AS TEXTILE FIBRES, OR ARE
USED TO MANUFACTURE PRODUCTS SUCH
AS DAMPING AND INSULATING MATERIALS
FOR THE AUTO INDUSTRY.

Established by the European Commission

ACKNOWLEDGMENTS

PhD Students:
F. Dulong
C. Gomes
X. Frogneux
E. Feguali
E. Blondiaux
S. Savourey
N. von Wolff
C. Chauvier
J. Char
A. Aloisi
L. Monsigny
T. Nasr Allah
T. Godou
A. Imberdis

Postdocs: Dr. O. Jacquet Dr. J. Pouessel Dr. A. Tlili

Dr. C. Lescot Dr. E. Nicolas Dr. A. Zanardi

Researchers: Dr. P. Thuéry Dr. J.-C. Berthet Dr. C. Genre

Dr. G. Lefèvre

Commissariat à l'énergie atomique et aux énergies alternatives Centre de Saclay | 91191 Gif-sur-Yvette Cedex T. +33 (0)1 69 08 43 38 | F. +33 (0)1 69 08 66 40 Direction des Sciences de la Matière Institut IRAMIS UMR CEA/CNRS 3299 – SIS2M