Real time dynamics of doped helium nanodroplets

Ernesto GARCÍA ALFONSO,^{*a,b*} François COPPENS,^{*a*} Patricia VINDEL ZANDBERGEN,^{*a*} Manuel MARTINEZ,^{*a*} Manuel BARRANCO,^{*a,c*} Fausto CARGNONI,^{*d*} Martí PI,^{*c*} and Nadine HALBERSTADT^{*a*}

^a LCAR-IRSAMC, Université Toulouse 3 and CNRS, France
 ^b Universidad La Habana, Cuba
 ^c Departament FQA and IN2UB, Universitat de Barcelona, Spain
 ^d C N R - I S T M, Milano, Italy

Helium nanodroplets:

• clusters of 500 to over 10^8 atoms

from Toennies, Phys. Today 2001

 $T\simeq 0.4~K$ from rotationally resolved spectra

Helium nanodroplets: Why study them?

Helium nanodroplets: Why study them?

Helium nanodroplets: Why study them?

superfluidity in a finite size system?

- "Frictionless" motion: molecular rotation, existence of a Landau critical velocity?
- Very high heat conductivity
- Zero-phonon lines separated from phonon wings
- Quantized vortices

Quantum "solvent"

- Helium droplets will pick up "anything"
 - atoms, molecules...
 - e⁻ metastable

Quantum "solvent"

- Helium droplets will pick up "anything"
 - atoms, molecules...
 - $-e^-$ metastable

He-electron interaction repulsive \rightarrow empty bubble around e⁻ (picture from G. Benedek)

Quantum "solvent"

- Helium droplets will pick up "anything"
 - atoms, molecules...
 - e⁻ metastable

He-electron interaction repulsive \rightarrow empty bubble around e⁻ (picture from G. Benedek)

- Location of the dopant:
 - M will sit near the center,
 - except alkalis, Ba, Sr, alkali clusters (which size?), A-Rg_n to solvate them...

- ${}^{4}\text{He}_{N}$: A "solvent" with very special properties:
 - extremely cold (0.4 K)
 - (super-)fluid
 - chemically inert
- \rightarrow high resolution spectroscopy

OCS rovibrational IR spectroscopy

- ${}^{4}\text{He}_{N}$: A "solvent" with very special propert
 - extremely cold (0.4 K)
 - (super-)fluid
 - chemically inert
- \rightarrow high resolution spectroscopy

OCS rotational resolution in ⁴He!

Grebenev, Toennies, Vilesov, Science 1998

PTCDA electronic spectroscopy

- ${}^{4}\text{He}_{N}$: A "solvent" with very special properties:
 - extremely cold (0.4 K)
 - (super-)fluid
 - chemically inert
- \rightarrow high resolution spectroscopy

(from Stienkemeier and Vilesov, J.Chem.Phys. 2001) \rightarrow e.g., Gert Von Helden: Catching proteins in liquid heliu

- ${}^{4}\text{He}_{N}$: A "solvent" with very special properties: **HCCCN** clustering
 - extremely cold (0.4 K)
 - (super-)fluid
 - chemically inert
- \rightarrow high resolution spectroscopy
 - very high heat conductivity \rightarrow fast cooling

 \rightarrow Exotic clustering

chain formation

driven by electrostatics

(exp. Nauta, Moore and Miller 1999, from Toennies, Angew.Chem. 2004)

- ${}^{4}\text{He}_{N}$: A "solvent" with very special properties:
 - extremely cold (0.4 K)
 - (super-)fluid
 - chemically inert
- \rightarrow high resolution spectroscopy
 - very high heat conductivity \rightarrow fast cooling
- \rightarrow Exotic clustering
- \rightarrow Chemical reactions: highly reactive species, low barriers...

 \rightarrow e.g., Gary E. Douberly: Spectroscopy and reactions of hydrocarbon radicals in helium nanodroplets

- ${}^{4}\text{He}_{N}$: A "solvent" with very special properties:
 - extremely cold (0.4 K)
 - (super-)fluid
 - chemically inert
- \rightarrow high resolution spectroscopy
 - very high heat conductivity \rightarrow fast cooling
- \rightarrow Exotic clustering
- \rightarrow Chemical reactions: highly reactive species, low barriers...

Science 279, 2065 (1998)

- ${}^{4}\text{He}_{N}$: A "solvent" with very special properties:
 - extremely cold (0.4 K)
 - (super-)fluid
 - chemically inert
- \rightarrow high resolution spectroscopy
 - very high heat conductivity \rightarrow fast cooling
- \rightarrow Exotic clustering
- \rightarrow Chemical reactions: highly reactive species, low barriers...

Science 279, 2065 (1998)

But the influence of the superfluid helium environment is not well known...

- Pickup by ${}^{4}\text{He}_{N}$:
 - extremely efficient: $\sigma \sim \sigma_{\rm geometrical}$

- Pickup by ${}^{4}\text{He}_{N}$:
 - extremely efficient: $\sigma \sim \sigma_{
 m geometrical}$
- Clustering
 - very high heat conductivity
 - \rightarrow fast cooling

chain formation

driven by electrostatics

(exp. Nauta, Moore and Miller 1999, from Toennies, Angew.Chem. 2004)

- Pickup by ${}^{4}\text{He}_{N}$:
 - extremely efficient: $\sigma \sim \sigma_{
 m geometrical}$

Clustering

- very high heat conductivity
 - \rightarrow fast cooling

Vortices

– they are quantum in superfluid He_N

- Pickup by ${}^{4}\text{He}_{N}$:
 - extremely efficient: $\sigma \sim \sigma_{
 m geometrical}$

• Clustering

- very high heat conductivity
 - \rightarrow fast cooling

Vortices

– they are quantum in superfluid He_N

• Pickup + Clustering by He_N hosting Vortices

- visualize vortices with Xe atoms
- filament-shaped clusters

Ag-doped very large droplets → filament-shaped clusters vizualizing vortices (Gessner and Vilesov, Annu. Rev. Phys. Chem. **70**, 173 (2019))

- Pickup by ${}^{4}\text{He}_{N}$:
 - extremely efficient: $\sigma \sim \sigma_{
 m geometrical}$

Clustering

- very high heat conductivity
 - \rightarrow fast cooling

Vortices

– they are quantum in superfluid He_N

• Pickup + Clustering by He_N hosting Vortices

- visualize vortices with Xe atoms
- filament-shaped clusters

 \rightarrow Study pickup and clustering by superfluid helium droplets hosting or not vortices...

Theoretical simulation: ⁴He-DFT for A@He_N

Total energy of the system as a function of the ⁴He density $\rho(\mathbf{r})$:

$$E[\rho] = \int d\mathbf{r} \left\{ \frac{\hbar^2}{2m_{\rm He}} \left| \nabla \sqrt{\rho(\mathbf{r})} \right|^2 + \mathcal{E}[\rho(\mathbf{r})] \right\} + \int d\mathbf{r} \,\rho(\mathbf{r}) \, V_{\rm A}(|\mathbf{r}_{\rm Rb} - \mathbf{r}|)$$

Orsay-Trento density functional : [F. Dalfovo, A. Lastri, L. Pricaupenko, S. Stringari & J. Treiner, PRB 1995; F. Ancilotto, M. Barranco, F. Caupin, R. Mayol & M. Pi, PRB 2005.]

$$\begin{aligned} \mathcal{E}_{c}[\rho] &= \frac{1}{2} \int d\mathbf{r}' \rho(\mathbf{r}) V_{LJ}(\mathbf{r} - \mathbf{r}'|) \rho(\mathbf{r}') + \frac{1}{2} c_{2} \rho(\mathbf{r}) \left[\bar{\rho}(\mathbf{r})\right]^{2} + \frac{1}{3} c_{3} \rho(\mathbf{r}) \left[\bar{\rho}(\mathbf{r})\right]^{3} \\ &- \frac{\hbar^{2}}{4m} \alpha_{s} \int d\mathbf{r}' F(|\mathbf{r} - \mathbf{r}'|) \left[1 - \tilde{\rho}(\mathbf{r})/\rho_{0s}\right] \nabla \rho(\mathbf{r}) \cdot \nabla' \rho(\mathbf{r}') \left[1 - \tilde{\rho}(\mathbf{r}')/\rho_{0s}\right] \\ &- \frac{m}{4} \int d\mathbf{r}' V_{J}(|\mathbf{r} - \mathbf{r}'|) \rho(\mathbf{r}) \rho(\mathbf{r}') \left[\mathbf{v}(\mathbf{r}) - \mathbf{v}(\mathbf{r}')\right]^{2} + C \rho(\mathbf{r}) \{1 + \tanh[\beta \left(\rho(\mathbf{r}) - \rho_{m}\right)]\} \end{aligned}$$

Theoretical simulation: ⁴He-DFT for $A@He_N$

Total energy of the system as a function of the ⁴He density $\rho(\mathbf{r})$:

$$E[\rho] = \int d\mathbf{r} \left\{ \frac{\hbar^2}{2m_{\rm He}} \left| \nabla \sqrt{\rho(\mathbf{r})} \right|^2 + \mathcal{E}[\rho(\mathbf{r})] \right\} + \int d\mathbf{r} \,\rho(\mathbf{r}) \, V_{\rm A}(|\mathbf{r}_{\rm Rb} - \mathbf{r}|)$$

Statics: Minimize $E[\rho]$ with respect to $\Psi(\mathbf{r}) = \sqrt{\rho(\mathbf{r})} : \rightarrow$ Euler-Lagrange equation:

$$\left\{-\frac{\hbar^2}{2m_{\mathsf{He}}}\,\nabla^2 + \frac{\delta\mathcal{E}}{\delta\rho} + V_{\mathsf{A}}(|\mathbf{r}_{\mathsf{A}} - \mathbf{r}|)\right\}\Psi(\mathbf{r}) = \mu\,\Psi(\mathbf{r})\;,\qquad\Psi(\mathbf{r}) = \sqrt{\rho(\mathbf{r})}$$

Sum of pairwise interactions with V_A from the literature (Aziz) Imaginary time propagation on a 3-D grid $\rightarrow \rho_0(\mathbf{r}) = \Psi_0^2(\mathbf{r})$

Theoretical simulation: ⁴He-DFT for A@He_N

Total energy of the system as a function of the ⁴He density $\rho(\mathbf{r})$:

$$E[\rho] = \int d\mathbf{r} \left\{ \frac{\hbar^2}{2m_{\rm He}} \left| \nabla \sqrt{\rho(\mathbf{r})} \right|^2 + \mathcal{E}[\rho(\mathbf{r})] \right\} + \int d\mathbf{r} \,\rho(\mathbf{r}) \, V_{\rm A}(|\mathbf{r}_{\rm Rb} - \mathbf{r}|)$$

Statics: Minimize $E[\rho]$ with respect to $\Psi(\mathbf{r}) = \sqrt{\rho(\mathbf{r})} : \rightarrow$ Euler-Lagrange equation:

$$\left\{-\frac{\hbar^2}{2m_{\mathsf{He}}}\,\nabla^2 + \frac{\delta\mathcal{E}}{\delta\rho} + V_{\mathsf{A}}(|\mathbf{r}_{\mathsf{A}} - \mathbf{r}|)\right\}\Psi(\mathbf{r}) = \mu\,\Psi(\mathbf{r})\;,\qquad\Psi(\mathbf{r}) = \sqrt{\rho(\mathbf{r})}$$

Sum of pairwise interactions with V_A from the literature (Aziz) Imaginary time propagation on a 3-D grid $\rightarrow \rho_0(\mathbf{r}) = \Psi_0^2(\mathbf{r})$

Dynamics: Time-dependent DFT Minimize the action / $\Psi_{\text{He}}(\mathbf{r}, t)$ $\Psi_{\text{He}}(\mathbf{r}, t)$ coupled to classical \mathbf{r}_{A} (mean field)

$$\begin{cases} i\hbar\frac{\partial}{\partial t}\Psi_{\rm He} &= \left[-\frac{\hbar^2}{2m_{\rm He}}\nabla^2 + \frac{\delta\mathcal{E}}{\delta\rho} + V_{\rm A}(\mathbf{r} - \mathbf{r}_{\rm A})\right]\Psi_{\rm He} \rightarrow \rho_{\rm He}(\mathbf{r}, t) = |\Psi_{\rm He}(\mathbf{r}, t)|^2 \\ m_{\rm A}\ddot{\mathbf{r}}_{\rm A} &= -\nabla_{\mathbf{r}_{\rm A}}\left[\int d\mathbf{r}\rho(\mathbf{r})V_{\lambda}(\mathbf{r} - \mathbf{r}_{\rm A})\right] = -\int d\mathbf{r}\,\nabla\rho(\mathbf{r})V_{\rm A}(\mathbf{r} - \mathbf{r}_{\rm A}) \end{cases}$$

Theoretical simulation: ⁴He-DFT for A@He_N

Total energy of the system as a function of the ⁴He density $\rho(\mathbf{r})$:

$$E[\rho] = \int d\mathbf{r} \left\{ \frac{\hbar^2}{2m_{\rm He}} \left| \nabla \sqrt{\rho(\mathbf{r})} \right|^2 + \mathcal{E}[\rho(\mathbf{r})] \right\} + \int d\mathbf{r} \,\rho(\mathbf{r}) \, V_{\rm A}(|\mathbf{r}_{\rm Rb} - \mathbf{r}|)$$

Statics: Minimize $E[\rho]$ with respect to $\Psi(\mathbf{r}) = \sqrt{\rho(\mathbf{r})} : \rightarrow$ Euler-Lagrange equation:

$$\left\{-\frac{\hbar^2}{2m_{\mathsf{He}}}\,\nabla^2 + \frac{\delta\mathcal{E}}{\delta\rho} + V_{\mathsf{A}}(|\mathbf{r}_{\mathsf{A}} - \mathbf{r}|)\right\}\Psi(\mathbf{r}) = \mu\,\Psi(\mathbf{r})\;,\qquad\Psi(\mathbf{r}) = \sqrt{\rho(\mathbf{r})}$$

Sum of pairwise interactions with V_A from the literature (Aziz) Imaginary time propagation on a 3-D grid $\rightarrow \rho_0(\mathbf{r}) = \Psi_0^2(\mathbf{r})$

Dynamics: Time-dependent DFT Minimize the action / $\Psi_{\text{He}}(\mathbf{r}, t)$ $\Psi_{\text{He}}(\mathbf{r}, t)$ coupled to classical \mathbf{r}_{A} (mean field)

$$\begin{cases} i\hbar\frac{\partial}{\partial t}\Psi_{\rm He} &= \left[-\frac{\hbar^2}{2m_{\rm He}}\nabla^2 + \frac{\delta\mathcal{E}}{\delta\rho} + V_{\rm A}(\mathbf{r} - \mathbf{r}_{\rm A})\right]\Psi_{\rm He} \rightarrow \rho_{\rm He}(\mathbf{r}, t) = |\Psi_{\rm He}(\mathbf{r}, t)|^2 \\ m_{\rm A}\ddot{\mathbf{r}}_{\rm A} &= -\nabla_{\mathbf{r}_{\rm A}}\left[\int d\mathbf{r}\rho(\mathbf{r})V_{\lambda}(\mathbf{r} - \mathbf{r}_{\rm A})\right] = -\int d\mathbf{r}\,\nabla\rho(\mathbf{r})V_{\rm A}(\mathbf{r} - \mathbf{r}_{\rm A}) \end{cases}$$

With vortices: work in the co-rotating frame ω : $\{\mathcal{H}[\rho] - \omega \hat{L}_Z\}\Psi(\mathbf{r}) = \mu\Psi(\mathbf{r})$

He-TDDFT simulation: Xe 200 m s⁻¹ collision with He₁₀₀₀ (thermal energy \leftrightarrow 240 m s⁻¹)

He-TDDFT simulation: Xe 200 m s⁻¹ collision with He₁₀₀₀

(thermal energy $\leftrightarrow 240 \text{ m s}^{-1}$)

If b >Droplet radius (22 Å), no capture

He-TDDFT simulation: Xe 200 m s⁻¹ *collision with He*₁₀₀₀

(thermal energy $\leftrightarrow 240 \text{ m s}^{-1}$)

He-TDDFT simulation: Xe 200 m s⁻¹ collision with He_{1000}

(thermal energy $\leftrightarrow 240 \text{ m s}^{-1}$)

Capture cross section \simeq geometrical cross section Coppens, Leal, Barranco, Halberstadt, Pi, JLTP **187**, 439 (2017);

DyMCoM,Institut Pascal Orsay, Nov. 25-29, 2019 - p.8/39

With a vortex Xe 200 m s⁻¹ collision with He₁₀₀₀ (thermal energy \leftrightarrow 240 m s⁻¹)

b = 0

With a vortex Xe 200 m s⁻¹ *collision with He*₁₀₀₀

With a vortex Xe 200 m s⁻¹ *collision with He*₁₀₀₀

Strong distorsions of the vortex line

Xe ends up bound to the vortex

Coppens et al., JLTP 187, 439 (2017); Coppens et al., PCCP 19, 24805 (2017) 25-29, 2019 - p.9/39

Clustering: Ar_2 2 Ar, 360 m s⁻¹ collision with He_{5000}

b = 0

DyMCoM,Institut Pascal Orsay, Nov. 25-29, 2019 - p.10/39

Coppens et al., Phys.Chem.Chem.Phys. 21, 17423 (2019)

Clustering: Ar_6 6 Ar 360 m s⁻¹ collision with He_{5000}

DyMCoM,Institut Pascal Orsay, Nov. 25-29, 2019 - p.11/39
Clustering: Ar_6 6 Ar 360 m s⁻¹ collision with He_{5000}

Clustering: Ar_6 6 Ar 360 m s⁻¹ collision with He_{5000}

Ar₆ formation inside He₅₀₀₀ hindered by He shell structure: "dilute" Ar₆ *Coppens et al., Phys.Chem.Chem.Phys.* **21**, 17423 (2019)

*Clustering: Ar*⁶ *with* 6 *vortices*

b = 0

DyMCoM,Institut Pascal Orsay, Nov. 25-29, 2019 – p.12/39

*Clustering: Ar*⁶ *with* 6 *vortices*

b = 0

A dilute Ar₆ cluster is formed, bound to the central cluster line *Coppens et al., Phys.Chem.Chem.Phys.* **21**, 17423 (2019)

Conclusion for cluster formation

- Capture cross section \simeq geometrical cross section
- Capture and cluster formation release a lot of energy in the droplet → necessity to describe the He droplet dynamics
- Clustering is well described by He-TDDFT (dimer formation)
- Clustering can be hindered by the He solvation structure
- Atoms are attracted to the vortex line(s) and end up bound to them
- Cluster formation along the vortex lines?

Would require longer time dynamics, with more Ar atoms and even larger droplets...

Also: Vary initial conditions

Excited state dynamics: He-induced electronic transitions?

He is chemically inert, at T \simeq 0.4 K it looks "inoffensive"

Excited state dynamics: He-induced electronic transitions?

He is chemically inert, at T \simeq 0.4 K it looks "inoffensive", and yet:

Laser-induced fluorescence of alkali atoms in He (cold dense gas, superfluid liquid , solid, droplets): → electronic relaxation

Also for molecules: $CI_2^*(B)$

```
\longrightarrow study case: Ak* at He_N
```

$Ak \rightarrow Ak^*$ Dynamics @ He droplets

- many experiments: LIF, beam depletion, VMI... (Scoles, Stienkemeier, Ernst, Drabbels, Mudrich,...)
- LIF experiments: Ak sits in a "dimple" at the He droplet surface (shift/liquid He)
- Photoexcitation: leads to Ak* or He_nAk* desorption [except for Rb*($5\Pi_{1/2}$) and Cs*($6\Pi_{1/2}$) low energy side]

$Ak \rightarrow Ak^*$ Dynamics @ He droplets

- many experiments: LIF, beam depletion, VMI... (Scoles, Stienkemeier, Ernst, Drabbels, Mudrich,...)
- LIF experiments: Ak sits in a "dimple" at the He droplet surface (shift/liquid He)
- Photoexcitation: leads to Ak* or He_nAk* desorption [except for Rb*($5\Pi_{1/2}$) and Cs*($6\Pi_{1/2}$) low energy side]

Theory

- Pseudo-diatomic model (He_N)—Ak remarkably valid for spectroscopy
- Ring Polymer MD for K* He₃₀₀ (Takayanagi and Shiga, PCCP 2004): one of the first dynamics studies
- He-DFT, TDDFT (Ancilotto, Callegari, Hernando, Matteo, Leal, Barranco, Pi, Eloranta, Dalfovo,...)

$Ak \rightarrow Ak^*$ Dynamics @ He droplets

- many experiments: LIF, beam depletion, VMI... (Scoles, Stienkemeier, Ernst, Drabbels, Mudrich,...)
- LIF experiments: Ak sits in a "dimple" at the He droplet surface (shift/liquid He)
- Photoexcitation: leads to Ak* or He_nAk* desorption [except for Rb*($5\Pi_{1/2}$) and Cs*($6\Pi_{1/2}$) low energy side]

Theory

- Pseudo-diatomic model (He_N)—Ak remarkably valid for spectroscopy
- Ring Polymer MD for K* He₃₀₀ (Takayanagi and Shiga, PCCP 2004): one of the first dynamics studies
- He-DFT, TDDFT (Ancilotto, Callegari, Hernando, Matteo, Leal, Barranco, Pi, Eloranta, Dalfovo,...)

This work: collaboration with Von Vangerow, Stienkemeier, Mudrich First direct time-dependent observation of the dynamics

Desorption dynamics of Rb*(5p, 6p)

Principle of the experiment

J. von Vangerow, O. John, F. Stienkemeier, and M. Mudrich, JCP 143, 034302 (2015)

33.7 RbHe⁺₂₀₀₀ 33.6 Rb Rb He Δt $h\nu_2$ 6ΡΣ - 6PП $h\nu_1$ 5SΣ 0.00 -0.01 -0.02 18 12 16 10 14 4 6 8 Distance from the droplet surface (Å)

Desorption dynamics of Rb*(5p, 6p)

Principle of the experiment

J. von Vangerow, O. John, F. Stienkemeier, and M. Mudrich, JCP 143, 034302 (2015)

initial state: $Rb(5s,\Sigma)@He_N$

laser 1 excitation

 $Rb(5s,\Sigma) \rightarrow Rb^*(np,\Sigma) @He_N$

ejecting $Rb^*(np,\Sigma)$

ejecting $Rb^*(np,\Sigma)$

laser 2 ionization

 Rb^+

slow down due to Rb⁺-He attraction

Rb⁺ *possible turnaround and ...*

Rb⁺ *possible turnaround and ...*

Rb⁺ *possible turnaround and solvation*

Experimental mass spectra 415 nm (24100 cm⁻¹) excitation (6pΠ)

J. von Vangerow, O. John, F. Stienkemeier, and M. Mudrich, JCP 143, 034302 (2015)

Theoretical simulation: ⁴He-DFT for A@He₁₀₀₀

Total energy of the system as a function of the ⁴He density $\rho(\mathbf{r})$:

$$E[\rho] = \int d\mathbf{r} \left\{ \frac{\hbar^2}{2m_{\rm He}} \left| \nabla \sqrt{\rho(\mathbf{r})} \right|^2 + \mathcal{E}[\rho(\mathbf{r})] \right\} + \int d\mathbf{r} \,\rho(\mathbf{r}) \, V_X(|\mathbf{r}_{\rm Rb} - \mathbf{r}|)$$

* Orsay-Trento density functional [F. Dalfovo, A. Lastri, L. Pricaupenko, S. Stringari &

J. Treiner, PRB 1995; F. Ancilotto, M. Barranco, F. Caupin, R. Mayol & M. Pi, PRB 2005.]

$$\begin{aligned} \mathcal{E}_{\boldsymbol{c}}[\rho] &= \frac{1}{2} \int d\mathbf{r}' \rho(\mathbf{r}) V_{LJ}(\mathbf{r} - \mathbf{r}'|) \rho(\mathbf{r}') + \frac{1}{2} c_2 \,\rho(\mathbf{r}) \left[\bar{\rho}(\mathbf{r})\right]^2 + \frac{1}{3} c_3 \,\rho(\mathbf{r}) \left[\bar{\rho}(\mathbf{r})\right]^3 \\ &- \frac{\hbar^2}{4m} \alpha_s \int d\mathbf{r}' F(|\mathbf{r} - \mathbf{r}'|) \left[1 - \tilde{\rho}(\mathbf{r})/\rho_{0s}\right] \nabla \rho(\mathbf{r}) \cdot \nabla' \rho(\mathbf{r}') \left[1 - \tilde{\rho}(\mathbf{r}')/\rho_{0s}\right] \\ &- \frac{m}{4} \int d\mathbf{r}' \,V_J(|\mathbf{r} - \mathbf{r}'|) \,\rho(\mathbf{r}) \,\rho(\mathbf{r}') \left[\mathbf{v}(\mathbf{r}) - \mathbf{v}(\mathbf{r}')\right]^2 + C \,\rho(\mathbf{r}) \{1 + \tanh[\beta \left(\rho(\mathbf{r}) - \rho_{\mathrm{m}}\right)] \end{aligned}$$

Theoretical simulation: ⁴He-DFT for A@He₁₀₀₀

Total energy of the system as a function of the ⁴He density $\rho(\mathbf{r})$:

$$E[\rho] = \int d\mathbf{r} \left\{ \frac{\hbar^2}{2m_{\rm He}} \left| \nabla \sqrt{\rho(\mathbf{r})} \right|^2 + \mathcal{E}[\rho(\mathbf{r})] \right\} + \int d\mathbf{r} \,\rho(\mathbf{r}) \, V_X(|\mathbf{r}_{\rm Rb} - \mathbf{r}|)$$

Statics: Minimize $E[\rho]$ with respect to $\Psi(\mathbf{r}) = \sqrt{\rho(\mathbf{r})} : \rightarrow$ Euler-Lagrange equation:

$$\left\{-\frac{\hbar^2}{2m_{\text{He}}}\,\nabla^2 + \frac{\delta\mathcal{E}}{\delta\rho} + V_X(|\mathbf{r}_{\text{Rb}} - \mathbf{r}|)\right\}\Psi(\mathbf{r}) = \mu\,\Psi(\mathbf{r})\,,\qquad\Psi(\mathbf{r}) = \sqrt{\rho(\mathbf{r})}$$

Sum of pairwise interactions with V_X from the literature (Patil 1991) Imaginary time propagation on a 3-D grid $\rightarrow \rho_0(\mathbf{r}) = \Psi_0^2(\mathbf{r})$

Theoretical simulation: ⁴He-DFT for A@He₁₀₀₀

Total energy of the system as a function of the ⁴He density $\rho(\mathbf{r})$:

$$E[\rho] = \int d\mathbf{r} \left\{ \frac{\hbar^2}{2m_{\rm He}} \left| \nabla \sqrt{\rho(\mathbf{r})} \right|^2 + \mathcal{E}[\rho(\mathbf{r})] \right\} + \int d\mathbf{r} \,\rho(\mathbf{r}) \, V_X(|\mathbf{r}_{\rm Rb} - \mathbf{r}|)$$

Statics: Minimize $E[\rho]$ with respect to $\Psi(\mathbf{r}) = \sqrt{\rho(\mathbf{r})} : \rightarrow$ Euler-Lagrange equation:

$$\left\{-\frac{\hbar^2}{2m_{\text{He}}}\,\nabla^2 + \frac{\delta\mathcal{E}}{\delta\rho} + V_X(|\mathbf{r}_{\text{Rb}} - \mathbf{r}|)\right\}\Psi(\mathbf{r}) = \mu\,\Psi(\mathbf{r})\,,\qquad\Psi(\mathbf{r}) = \sqrt{\rho(\mathbf{r})}$$

Sum of pairwise interactions with V_X from the literature (Patil 1991) Imaginary time propagation on a 3-D grid $\rightarrow \rho_0(\mathbf{r}) = \Psi_0^2(\mathbf{r})$

Dynamics: Time-dependent DFT Minimize the action / $\Psi_{\text{He}}(\mathbf{r}, t)$

$$\begin{split} \Psi_{\mathrm{He}}(\mathbf{r},t) \text{ coupled to electronic wave packet } \begin{pmatrix} |\lambda \rangle \\ |\lambda \rangle \text{ and to classical } \mathbf{r}_{\mathrm{Rb}^{*}} \text{ (mean field)} \\ \\ \left\{ \begin{array}{l} i\hbar \frac{\partial}{\partial t} \Psi_{\mathrm{He}} &= \left[-\frac{\hbar^{2}}{2m_{\mathrm{He}}} \nabla^{2} + \frac{\delta \mathcal{E}}{\delta \rho} + V_{\lambda} (\mathbf{r} - \mathbf{r}_{\mathrm{Rb}^{*}}) \right] \Psi_{\mathrm{He}} \rightarrow \rho_{\mathrm{He}}(\mathbf{r},t) = |\Psi_{\mathrm{He}}(\mathbf{r},t)|^{2} \\ \\ i\hbar \frac{\partial}{\partial t} \left(|\lambda \rangle \right) &= \mathcal{H}_{\mathrm{el}} |\lambda \rangle = (\mathcal{H}_{\mathrm{DIM}} + \mathcal{H}_{\mathrm{SO}}) |\lambda \rangle \\ \\ & \text{where } \left[|\lambda \rangle = \sum_{is} \lambda_{is}(t) |p_{i}, m_{s} \rangle \right] \rightarrow V_{\lambda} = \langle \lambda | \mathcal{H}_{\mathrm{el}} |\lambda \rangle \\ \\ & m_{\mathrm{Rb}} \ddot{\mathbf{r}}_{\mathrm{Rb}^{*}} &= -\nabla_{\mathbf{r}_{\mathrm{Rb}^{*}}} \left[\int d\mathbf{r} \rho(\mathbf{r}) V_{\lambda} (\mathbf{r} - \mathbf{r}_{\mathrm{Rb}^{*}}) \right] = -\int d\mathbf{r} \nabla \rho(\mathbf{r}) V_{\lambda} (\mathbf{r} - \mathbf{r}_{\mathrm{Rb}^{*}}) \\ \\ \end{array} \right] \end{split}$$

He-TDDFT simulation $t_1: 1^{st}$ laser excitation $He_N \cdots Rb(5s\ ^2\Sigma_{1/2}) \rightarrow He_N \cdots Rb^*(5p\ ^2\Sigma_{1/2})$ $t_2: 2^{nd}$ laser ionization $He_N \cdots Rb^*(5p\ ^2\Sigma_{1/2}) \rightarrow He_N \cdots Rb^+$

 $t_2 = 55 \ ps$ $t_2 = 20 \ ps$

Von Vangerow, Coppens, Leal, Pi, Barranco, Halberstadt, Stienkemeier and Mudrich, JPCL **8**, 307 (2017)

He-TDDFT simulation $t_1: 1^{st}$ laser excitation $He_N \cdots Rb(5s\ ^2\Sigma_{1/2}) \rightarrow He_N \cdots Rb^*(5p\ ^2\Sigma_{1/2})$

 t_2 : 2^{nd} laser ionization

$$He_N \cdots Rb^* (5p^2 \Sigma_{1/2}) \rightarrow He_N \cdots Rb^+$$

Critical time delay τ_c :

• if
$$t_2 - t_1 > \tau_c$$
, Rb⁺ escapes;

• if $t_2 - t_1 < \tau_c$, Rb⁺ turns around and gets solvated.

Von Vangerow, Coppens, Leal, Pi, Barranco, Halberstadt, Stienkemeier and Mudrich, JPCL **8**, 307 (2017)

Comparison with experiments

Von Vangerow et al., J. Phys. Chem. Lett. 8, 307 (2017)

Everything works...

- He-TDDFT gives a good qualitative description of Rb* $(6p, {}^{2}\Sigma_{1/2}, {}^{2}\Pi_{3/2}, {}^{2}\Pi_{1/2})$ and Rb* $(5p, {}^{2}\Sigma_{1/2}, {}^{2}\Pi_{1/2})$ photodissociation from He_N
- 2 orders of magnitude difference for critical fall-back times between 5p and 6p excitation well reproduced

except for $Rb^*(5\,^2\Pi_{3/2})$ *:*

- ejected exciplex in experiment
- bound exciplex in our simulations
- initial Rb position? (zero-point delocalization or T = 0.4 K):
- initial electronic excitation could be mixed?
- non-adiabatic transition to ${}^{2}\Pi_{1/2}$? (Moroshkin et al. 2006 solid He; several Ak* experiments)
- \rightarrow existence of **He-induced electronic relaxation** (non-radiative transitions)?

Including spin-orbit relaxation

Model:

- He-TDDFT for Rb(5p² $\Pi_{3/2}$) \rightarrow bound exciplex
- after 60 ps, jump down to ${}^{2}\Pi_{1/2}$; transfer *x*% of ΔE to Rb \rightarrow He-Rb ejection ?

He-TDDFT for x=12.5

Including spin-orbit relaxation

Coppens et al., Phys. Chem. Chem. Phys. 20, 9309 (2018)

He-induced electronic transitions: How to predict them?

He-induced electronic transitions:

How to predict them? The case of Ba⁺

- He-TDDFT gives very good results for Ba⁺ solvation upon ionization,
- also for its absorption and emission spectrum once it is solvated
- but Zhang and Drabbels observed Ba⁺ ejection upon $6p \leftarrow 6s$ excitation which could not be reproduced

He-Ba⁺ *potential energy curves*

PEC from M. Mella and MF. Cargnoni, JPCA 118, 6473 (2014)

DyMCoM,Institut Pascal Orsay, Nov. 25-29, 2019 - p.27/39
Model for potential energies and couplings

 $\Lambda = 0$ mixing coefficients

MRCI electronic structure calculation; Eigenvectors projected onto asymptotic ones: Ba⁺ *6s, 5d, 6p*

Model for potential energies and couplings

R (Å) *MRCI electronic structure calculation; Eigenvectors projected onto asymptotic ones:* $Ba^+ 6s, 5d, 6p$ Eigenvector coefficients – Transformation matrix to Ba⁺ states \rightarrow diabatic curves and

Eigenvector coefficients = Transformation matrix to Ba^+ states \rightarrow *diabatic curves and couplings* DyMCoM,Institut Pascal Orsay, Nov. 25-29, 2019 – p.28/39

Model for potential energies and couplings

R (Å) *MRCI electronic structure calculation; Eigenvectors projected onto asymptotic ones:* Ba^+ 6s, 5d, 6p Eigenvector coefficients – Transformation matrix to Ba⁺ states \rightarrow diabatic curves an

Eigenvector coefficients = Transformation matrix to Ba^+ states \rightarrow *diabatic curves and couplings* DyMCoM,Institut Pascal Orsay, Nov. 25-29, 2019 – p.28/39

So from this potential model:

- Model for He-Ba⁺ electronic Hamiltonian → diabatic representation (potentials, couplings) for 6s, 5d, 6p mixing
- Couplings are too weak to induce electronic relaxation in HeBa⁺
- But they can induce electronic relaxation in configurations with more He atoms
- More relaxation when getting out of cylindrical symmetry (vibrations)

Vindel Zandbergen et al., J. Phys. Chem. 148, 144302 (2018);

ightarrow Dynamics study !

Influence of the Helium nanodroplet environment: Explicit Zero-Point Averaged He dynamics (ZPAD)

• ZPAD Dynamics cf. David Bonhommeau's thesis on Rg_n^+ He_N

- $(Ba^+)^*$ He_N DIM + SO; Molecular Dynamics with Quantum Transitions (Tully)
- He_N : classical (adiabatic) taking the ZPE effects into account on average

Potentials

He ··· He: ZPAD equivalent to classical dynamics with effective potential (He-He potential averaged over the He wave function) (Portwich 1995, Slavíček et al., JPCA 2003; Sterling et al., JCP 1995)
He ··· Ba⁺, He ··· (Ba⁺)* Σ, Π: analytic forms fitted to F.Cargnoni's curves averaged over the He wave function

(TDDFT; semiclassical path integral centroid MD by Takayanagi and Shiga, multiple hard sphere collisions by Drabbels, CBF by Zillich; but most are mean field)

Reasonable initial conditions

He-DFT from Leal, Mateo, Hernando, Pi, Barranco, Ponti, Cargnoni and Drabbels, PRB 90, 224518 (2014).

He₁₀₀₀ Ba⁺ ZPAD structure calculated by David Bonhommeau^{Institut Pascal Orsay, Nov. 25-29, 2019 – p.31/39}

Absorption spectrum

Zhang and Drabbels, JCP **137**, 051102 (2012)

shift \sim correct, width too small missing quantum fluctuations

Dynamics for $Ba^{+2}\Sigma_{1/2}$ excitation: typical trajectory

As expected, many He dissociate, some of them fast and early.

Dynamics for $Ba^{+2}\Sigma_{1/2}$ excitation: typical trajectory

As expected, many He dissociate, some of them fast and early. **BUT:** a double excimer is formed??? This normally only happens for ${}^{2}\Pi_{3/2}$

Electronic transition at work

DyMCoM,Institut Pascal Orsay, Nov. 25-29, 2019 - p.34/39

How did that happen?

DyMCoM,Institut Pascal Orsay, Nov. 25-29, 2019 - p.35/39

How did that happen?

At ~0.1 ps, ${}^{2}\Sigma_{1}/2$ and ${}^{2}\Pi_{3/2}$ come very close: $\Delta \simeq 20 \text{ cm}^{-1}$ (quasi-spherical symmetry) \rightarrow strong coupling \rightarrow "hop" (electronic transition).

Conclusion/Perspectives

- Yes, there are electronic transitions induced by He at 0.4 K!
- He-(TD)DFT is a very accurate and realistic tool to describe doped He droplet structures and dynamics
- It can describe the dynamics following an electronic transition
- Molecular model is complementary since it can describe potentials and couplings, and predict transitions
- Approximate (ZPAD) quantum molecular dynamics for Ba⁺ at He_N (not finished): include quantum fluctuations in the initial conditions, ...
- \rightarrow couple TDDFT to other dynamics

Many thanks for your attention!

Programme Chaires d'Attractivité Manuel Barranco **Excimer formation dynamics**

excimer formation: same kinetics for ${}^{2}\Pi_{3/2}$ and ${}^{2}\Sigma_{1/2}$

DyMCoM,Institut Pascal Orsay, Nov. 25-29, 2019 - p.38/39

He evaporation dynamics

Slower dynamics for ${}^{2}\Pi_{1/2}$