
Economic feasibility of PV self-consumption in the French residential sector in 2030

Hyun Jin Julie YU (julie.yu@cea.fr) Institute for Techno-Economics of Energy Systems (I-tésé), CEA

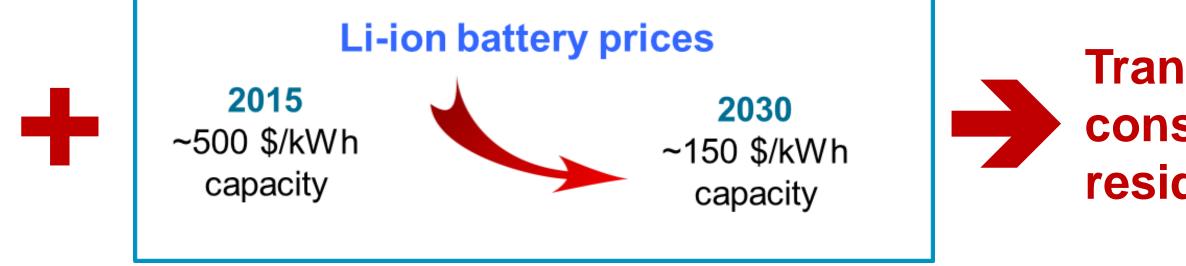
Introduction

Methods

Cost of PV modules [1]

Poor correlation with residential consumption profile P (W) ~30%-40%

12:00 18:00


The study includes the following steps:

1. Define the optimum battery size to achieve a significant level of PV self-consumption in the residential sector [4]

> Assumption: the use of 3 kWp PV systems coupled with 4 kWh Li-ion batteries is optimum reaching 80% to 90% of PV self-consumption.

2. Estimate the PV LCOE in the French residential PV systems by 2030 based on the International Energy Agency (IEA) scenarios of PV

Continuous price decline in the batteries [2][3]

Transition to PV selfconsumption in the residential sector ?

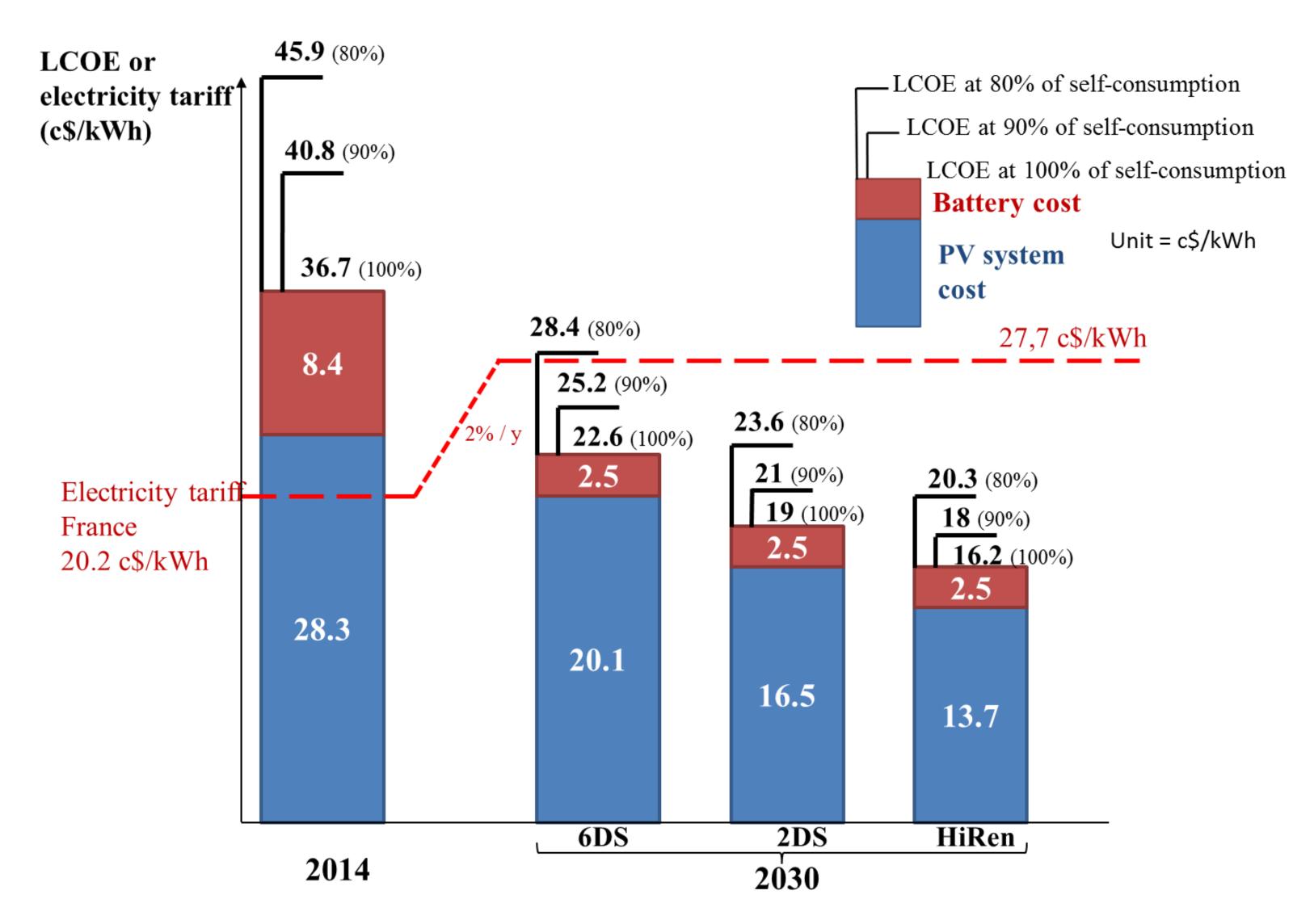
\succ Impacts on all stakeholders in electricity market \Rightarrow Necessity for policymakers to understand the timing of this transition.

 \succ This study attempts to evaluate the economic attractiveness of French residential PV systems with batteries in the near future.

deployment and the learning curve approach.

> Assumptions:

- Average current cost of \$ 3.1/Wp for the PV residential systems [5] and a learning rate of 18% [6]
- Current battery price of \$500/kWh including installation costs and a cost of \$150/kWh for 2030 [3]
- 3. Compare the results with the estimated price of electricity in 2030. > Assumption: the electricity tariffs increase by 2% per year until 2030.
- The conclusion discusses the policy implications.


Results

1. Estimated residential PV system costs in 2030 from 1.5 \$/Wp (hi-Ren scenario) to 2.19 \$/Wp (6DS scenario).

	2013	IEA's scenarios for 2030		
		6DS	2DS	HiRen
World PV cumulated installations (GWp)	135	451	842	1721
Residential PV system costs (\$/Wp)	3.1	2.19	1.84	1.5

Conclusions

- PV self-consumption with batteries could become profitable in France before 2030.
 - \succ The demand in the residential sector would thus be natural in the near future in France.
 - It gives an important opportunity for PV development with advantages (e.g. no grid reinforcement needed and no new land usage).
 - \succ It is also possible to advance the timing by improving PV economic competitiveness (e.g. non-module sector).
- 2. Calculated LCOEs* for PV systems with batteries in 2030 and comparison with the residential electricity tariff

- However, expanded PV integration through a self-consumption model raises new issues related to changes in the interests of stakeholders in the energy market.
- \succ Losses in terms of the network funding (loss of grid operator) revenues, max. 3.4 billion \$/year).
- Negative impact on long-term investment choices in electricity sector
- Important to prepare a regular and progressive policy for the transition to PV self-consumption.
 - \succ Enable the relevant stakeholders to have enough time to adapt to the new market situation
 - Limiting the systemic impacts of PV power in the future as PV penetration becomes significant

How policymakers prepare for this change with a proper institutional framework supported by a long-term vision will affect the success of PV integration.

References

[1] IEA PVPS Trends in photovoltaic applications 2006 and 2015 [2] TECSOL, 2015. La batterie de Tesla est 2 à 2,5 fois meilleure marché que la concurrence.

*Assumptions for LCOE calculations : an irradiation of 1000 kWh/kWp/year, WACC=5%, 20 year lifetime for PV system and 10 year lifetime for Li-ion battery system

In conclusion :

- > Even by adding the cost of batteries, PV systems would become competitive in France by 2030 under all IEA scenarios with a selfconsumption rate of above 80%.
- \succ France has 18.8 million individual houses [7] : a potential PV production of 56 TWh/year (12% of the French electricity production)
- > Risks: sub-optimization of electricity system with massive & uncontrolled PV self-consumption deployments

[3] Deutsche Bank, 2015. Crossing the Chasm: Solar grid parity in a low oil price era

[4] Weniger, J., Bergner, J., Tjaden, T. & Quaschning, V., 2014. Economics of residential PV battery systems in the self-consumption age. s.l., 29th European Photovoltaic Solar Energy Conference and Exhibition [5] IEA Technology roadmap: Solar photovoltaic energy 2014 edition [6] IEA Technology roadmap: Solar photovoltaic energy 2010 edition [7] ADEME, Bâtiment édition 2013 - Chiffres clés

Acknowledgements

This study is part of the author's Ph.D. research project. The author would like to thank Nathalie Popiolek (CEA) and Patrice Geoffron (Paris-Dauphine University) for the scientific advice and guidance throughout the Ph.D. period.

L'Université Paris-Saclay moteur de la transition énergétique