Acknowledge:

Main Collaborators

b) molecular cloud (gas and dust)

) dense cloud core

Observational Challenges to Understand Molecular Evolution along Star Formaion

e) protostar and protpplanetary disk

- (2) Tracing reactions using isotope ratios
- (3) Tracing reactions by Doppler analysis (distributions)
- (4) Difficulties
- (5) Summary

d) protostar, protostellarenvelope/disk, and outflow/jet

Nami Sakai (RIKEN)

f) matured system (star and planetary system)

(1) Introduction 1/7 Molecules in Space (~200 species)

2 Atoms (42 Species) H₂, CO, AIF, AICI, C₂, C O₂, CF⁺, SiH (?), PO, Al(3 Atoms (40 Species) C₃, C₂H, C₂O, C₂S, CH₂, CO₂, NH₂, H₃⁺, SiCN, Al 4 Atoms (27 Species) c-C₃H, I-C₃H, C₃N, C₃O, HCNO, HOCN, HSCN, H 5 Atoms (23 Species) $C_5, C_4H, C_4Si, I-C_3H_2, c-$ HNCNH, CH₃O, NH₄⁺, H 6 Atoms (17 Species) $C_{5}H$, *I*- $H_{2}C_{4}$, $C_{2}H_{4}$, $CH_{3}C_{5}$ **HNCHCN** 7 Atoms (10 Species) C_6H , CH_2CHCN , CH_3C_2H 8 Atoms (11 Species) CH_3C_3N , $HC(O)OCH_3$, C9 Atoms (10 Species) CH_3C_4H , CH_3CH_2CN , (C 10 Atoms (5 Species) CH_3C_5N , $(CH_3)_2CO$, $(CH_3)_2CO$ 11 Atoms (4 Species) $HC_{9}N, CH_{3}C_{6}H, C_{2}H_{5}OC$ 12 Atoms (4 Species) $c-C_6H_6$, $n-C_3H_7CN$, $i-C_3H_7CN$, $C_2H_5OCH_3$ (1) >12 Atoms (3 Species) C_{60}, C_{70}, C_{60}^+

Tailing delected by radio observations

(Gray: Detected toward AGB stars) (The Cologne Database for Molecular Spectroscopy (CDMS): Nov. 2016.) (1) Introduction 2/7

Non-equilibrium Chemistry

Formation of Molecules: H₃⁺ chemistry (ex; CO)

$$\begin{array}{c} \hline H_{3}^{+} + C \rightarrow CH^{+} + H_{2}, \\ CH^{+} + H_{2} \rightarrow CH_{2}^{+} + H, \\ CH_{2}^{+} + H_{2} \rightarrow CH_{3}^{+} + H, \\ CH_{3}^{+} + e \rightarrow (CH_{2} + H) \text{ or } (CH + H + H), \\ CH + O \rightarrow \boxed{CO} + H. \end{array}$$

$$\begin{array}{c} \tau_{f} \sim \frac{1}{k[H_{3}^{+}]} = \frac{[CO]}{\zeta} \sim 3 \times 10^{5} \text{ yr} \\ \Rightarrow \text{typically} \sim 10^{6} \text{ yr} \\ \Rightarrow \text{typically} \sim 10^{6} \text{ yr} \\ H_{2} \stackrel{cr}{\rightarrow} H_{2}^{+} + e \\ H_{2}^{+} + H_{2} \rightarrow H_{3}^{+} + H \\ H_{3}^{+} + CO \rightarrow HCO^{+} + H_{2}. \\ \zeta[H_{2}] = k[CO][H_{3}^{+}]. \end{array}$$

Destruction : Reaction with He⁺

$$\frac{d[\text{He}^+]}{dt} = \zeta[\text{He}] - k[\text{He}^+][\text{CO}] = 0$$

$$\tau_{\text{d}} \sim \frac{1}{k[\text{He}^+]} = \frac{[\text{CO}]}{\zeta[\text{He}]} \sim 1.4 \times 10^7 \text{ yr}$$

$$\zeta: \text{ Cosmic ray ionization rate}(\sim 10^{-17} \text{ s}^{-1})$$

$$k: \text{ Langevin rate}(\sim 10^{-9} \text{ cm}^3 \text{ s}^{-1})$$

~10' yr at Av > 5 cloud (Ionic Destruction: slow) ~10² yr at Av < 3 cloud (Photodissociation: fast) $_{3/43}^{3/43}$

Chemical Evolution & Star Formation

(1) Introduction 4/7

アルマ望遠鏡(アタカマ大型ミリ波/サブミリ波干渉計) (ALMA: Atacama Large Millimeter/sub-millimeter Array)

High angular resolution $1'' \rightarrow < 0.01'' - 0.1''$

High sensitivity 100 hours \rightarrow 10 min.

Altitude: 5000 m

3 mm - 0.4 mm (84 - 940 GHz)

Main antenna : 12 m x 50 ACA antenna: 12 m x 4, 7 m x 12 Total:66

2011, partial operation with 16 antennae started Europe(ESO), North America(NRAO), and East Asia (NAOJ/NIMS) in cooperation with Chile (1) Introduction 5/7

6/43

- At least two different chemical environments are recognized
- Edge of the disk is highlighted by chemical change

Characterized by unsaturated species (ex: L1527)

Characterized by saturated species (ex: IRAS16293-2422A/B)

(e.g. Sakai et al. 2014, Nature 507, 78; 2014, ApJ, 791, L38; 2017, MNRAS, 467, L76; Oya et al. 2016, ApJ, 824, 88; 2018, ApJ, 854, 96)

(1) Introduction 6/7 Progress in the last decade <2010 2014 2017 2019 1,000 au: 100 au: 30 au: 10 au: Before ALMA ALMA Cycle 0 Cycle 2 Cycle 4

⁽Sketch provided by Y. Aikawa)

7/43

(Sakai+2010, *ApJ*, 722, 1633;+2014, *Natur*. 507, 78; +2014, *ApJ*, 791, L38; +2017, *MNRAS*, 467, L76; +2019, *Natur*. 565, 206)

(1) Introduction 7/7

How to Know the Details?

- How those molecules are formed ?
- Can we distinguish gas-origin and grain-surface-origin?
- Future of the ice composition in hot Corino vs WCCC CH_3OH/COMs vs (CH_4 or H_2CO)
- Polymerization of carbon-chain molecules after the depletion?
- Formation/destruction of Sulfur-bearing species are not known well.

→ Chemical Model? Lab. Experiment? Observational constraints!

8/43 Photo: Cygnus

Back to Starless Cores -Molecular ¹²C/¹³C ratios-

9/43 Photo: Taurus Molecular Cloud

Abundance Anomaly: ¹³C species of CCS

(2) Tracing reactions using isotope ratios

Abundance Anomaly: ¹³C species of CCH

 $R = 1.6 \pm 0.4 (3\sigma)$

 $R = 1.6 \pm 0.1 (3\sigma)$

If CCS is formed via S⁺ +CCH... $S^+ + {}^{13}CCH \rightarrow C^{13}CS + H$ $S^+ + C^{13}CH \rightarrow {}^{13}CCS + H$ **Opposite** !

(Sakai+2010, A&A, 512, A31)

(2) Tracing reactions using isotope ratios

Abundance Anomaly: ¹³C species of CCH

Production pathways of CCH $HCCH^+ + e \rightarrow CCH + H$ $C_2H_2^+ + e \rightarrow CCH + H_2$ $CH_2^- + C \rightarrow CCH + H$

(Sakai+2010, A&A, 512, A31)

¹²C/¹³C Ratio to Trace the Reactions

Anomaly of the ¹²C/¹³C ratios in the starless core, TMC-1(CP)

CH/ ¹³ CH	>71 (3 <i>o</i>)	CCCCH/ ¹³ CCCCH	$141 \pm 44 (3\sigma)$
CCH/ ¹³ CCH	>250	CCCCH/C ¹³ CCCH	$97 \pm 27 (3\sigma)$
CCH/C ¹³ CH	>170	CCCCH/CC ¹³ CCH	$82 \pm 15 (3\sigma)$
CCS/ ¹³ CCS	$230 \pm 130 \ (3\sigma)$	CCCCH/CCC ¹³ CH	$118 \pm 23 \ (3\sigma)$
CCS/C ¹³ CS	$54 \pm 5 (3\sigma)$	HCCCN/H ¹³ CCCN	$79 \pm 11_{(Takano+1997)}$
CCCS/ ¹³ CCCS	>206 (3 <i>o</i>)	HCCCN/HC ¹³ CCN	$75 \pm 10 (1\sigma)$
CCCS/C ¹³ CCS	$48 \pm 15 (3\sigma)$	HCCCN/HCC ¹³ CN	$55 \pm 7(1\sigma)$
CCCS/CC ¹³ CS	30-206	$HC_5N/HC_5N^{13}C$ isotopomers	82-103 (Takano+1990, Taniguchi+2016
(<i>e.g.</i> Sakai et al. 2013, JPC, 117, 9831)		HC ₇ N/average ¹³ C isotopomers	87^{+35}_{-19} (1 σ) (Langston & Turner 2007)

Interstellar ¹²C/¹³C ratio : 60-70

14/43

Different ratios in the same species. Dilution of ¹³C in molecules.

e.g. Lucas & Liszt (1998): 59, derived from HCO⁺, HCN, & HNC Milam+(2005): 68, derived from CO, CN, & H₂CO

¹³C-Dilution Mechanism in Molecules

- Main reservoir of ¹³C in molecular cloud \rightarrow ¹³CO
- Source of ¹³C⁺ for production of molecules

 $CO + He^+ \rightarrow C^+ + O + He (\rightarrow Original {}^{12}C^+/{}^{13}C^+ = 60-70)$

Main loss process of ¹³C⁺

 ${}^{13}C^{+} + {}^{12}CO \rightarrow C^{+} + {}^{13}CO + 35 \text{ K}$

High ¹²C/¹³C ratio in various molecules

(*c.f.* Langer+1984, ApJ, 277, 581).

Case study: CH₃OH

Gas phase Formation $CH_3^+ + H_2O \rightarrow CH_3OH_2^+ + h\nu$ $CH_3OH_2^+ + e \rightarrow CH_3OH + H$ $^{12}C/^{13}C > > 60-70$ Formation on Grains $CO \rightarrow HCO \rightarrow H_2CO$ $\rightarrow CH_3O \rightarrow CH_3OH$ $^{12}C/^{13}C = 60-70$

16/43

TMC-1(CP): Starless core ¹³CH₃OH: $J_{K} = 1_{0}-0_{0} A^{+}, 2_{0}-1_{0} A^{+}, 2_{-1}-1_{-1} E$ ¹²CH₃OH: $J_{K} = 1_{0}-0_{0} A^{+}, 2_{0}-1_{0} A^{+}, 2_{-1}-1_{-1} E,$ $3_{0}-2_{0} A^{+}, 3_{-1}-2_{-1} E$

 ${}^{12}C/{}^{13}C = 62 \pm 10$ (LVG) Non-thermal desorption (Reaction-Excess energy, Cosmic-induced UV, etc.)

(Soma+2015, ApJ, 802, 74, cf; Soma+2018, ApJ, 854, 116)

How to constrain the pathways?

Macroscopic Approach

Microscopic Approach (Isotopic Species) (Like data assimilation..?) (3) Tracing reactions by Doppler analysis

-Doppler analysis of the lines-

18/43 Photo: Taurus Molecular Cloud Origin of COMs in TMC-1

•CH₃OH is released into gas-phase in core peripheries (starless core case)
 •Line shapes of carbon-chain molecules are different from that of CH₃OH
 →Always narrower in carbon-chain molecules
 →Narrower in gas-phase species (Soma+2015, ApJ 802, 74)

(3) Tracing reactions by Doppler analysis Origin of COMs in TMC-1

20/43

V_{LSR} [km/s] (Soma+2018, ApJ, 854, 116)

(3) Tracing reactions by Doppler analysis Origin of COMs in TMC-1

(4) Difficulties

Difficulties

1) Interpretation: Effect of isotope exchange reaction?

2) Identification/Observation: Rest frequency accuracy

2-1) Isotopic species
2-2)-<0.1 km/s accuracy required even for major species
2-3) Higher excitation lines

3) Many unidentified lines

22/43 Photo: Cygnus

Other Possibilities

(cf: $T_{kin} \sim 10 \text{ K}@\text{TMC-1}$) Isotope exchange reactions?? ($T_{rot} < 10 \text{ K}$, not thermalized)

CCH i) H + *CCH \rightarrow H*CC + H (ΔE =8 K) 1 : 1.6 (Observation)

CCS ii) S + *CCS \rightarrow S*CC + S (ΔE =17 K)

S is less abundant than H.4.2 (Observation)S is less abundant than H.Is this possible ???

(CCH: Tarroni, private communication) (CCS: Osamura, private communication)

Other Possibilities

(cf: $T_{kin} \sim 10 \text{ K}@\text{TMC-1}$) Isotope exchange reactions?? ($T_{rot} < 10 \text{ K}$, not thermalized)

- CCH i) H + *CCH \rightarrow H*CC + H (ΔE =8 K) 1 : 1.6 (Observation)
- **CCS** ii) S + *CCS \rightarrow S*CC + S (ΔE =17 K)

S is less abundant than H.I:**4.2 (Observation)**S is less abundant than H.Is this possible ???

iii) $H + *CCS \rightarrow C*CS + H$?? The simplest catalyst !?

(CCH: Tarroni, private communication) (CCS: Osamura, private communication)

Exchange Reaction; CCH Case *DE is only 8 K*

	TMC-1			L1527	
<i>n</i> (H ₂)/cm ⁻³	104	3x10 ⁴	10 ⁵	10 ⁵	10 ⁶
R	1.51	1.23	1.07	1.16	1.02
R(obs)	1.6	6 ± 0.4 (3	3σ)	1.6 ±0	Ο.1 (3σ)

Other Possibilities

(cf: *T*_{kin}~10 K@TMC-1)

Isotope exchange reactions??

CCH i) H + *CCH \rightarrow H*CC + H (ΔE =8 K) 1 : 1.6

ii) $S + *CCS \rightarrow S^*CC + S (\Delta E = 17 \text{ K})$ CCS Is this possible ??? 4.2 The simplest catalyst !? iii) H + *CCS \rightarrow C*CS + H ?? ¹³C on-axis : ¹³C off axis =1:5 in L1527 $C - C_2 H_7$ (expected to be 1:2) **Closed-shell molecule** If it happens for C_3H_2 , $I-C_3H_2 \Leftrightarrow c-C_3H_2$ would happen. 27/43In this case, $I-C_3H_2$ would be killed..... (Yoshida+2015, ApJ, 807, 66)

(4) Difficultie Spectral Line Frequency of ¹³C Species

9

(4) Difficulties-2

Required accuracy for Doppler analysis

Thermal line width ~ 0.1 km/s
→ <300 kHz @ 1 THz

(Various high excitation lines)
→ <30 kHz @ 100 GHz
(Various "complex" species)

→ <0.5 kHz @ 1.6 GHz

(OH ground state transitions)

(4) Difficulties-2

Required accuracy for Doppler analysis

(4) Difficulties 2&3

"High-Mass" Protostar: NGC 2264 CMM3

CMM3 is resolved into two sources.

- Separation: \sim 1 arcsec
- Binary system (CMM3A and CMM3B)
- _{32/43}Four new continuum sources (CP1-CP4)

Intermediate-mass protostellar binary?

(Watanabe, Y., Sakai, N. et al. 2017, ApJ, 847, 108)

(4) Difficulties 2&3

Spectrum toward CMM3A

(Watanabe, Y., Sakai, N. et al. 2015, ApJ, 809, 162; Watanabe, Y., Sakai, N. et al. 2017, ApJ, 847, 108)

(4) Difficulties 2&3 Expanded Spectrum toward CMM3A

(4) DiffNGC2264 CMM3A

(4) Difficulties 2&3 Rest Frequencies of Molecules→ Spectral Line Database

Jet Propulsion Laboratory California Institute of Technology + Vie		Search and Conversion Form of the Cologne Database for Molecular Spectrosco	
JPL HOME EARTH SOLAR SYSTEM	Please enter the frequency range: min: $\boxed{0}$ max: $\boxed{100}$ u If GHz is checked, the format of the output will be in standard catalog form If cm^{-1} is checked, the frequency and error fields of the output will be in c What is the common log of the minimum strength in catalog units?	nits are in: ● GHz or ● cm ⁻¹ . n (with MHz units). m ⁻¹ .	
Molecular Spectroscopy Jet Propulsion Laboratory California Institute of Technology	What molecules should be included ? (Use mouse to select entry, including all or <u>special groups of molecules;</u> use mouse control click to select multiple values.) Note:	003501 HD all species 004501 H2D+ ISM/CSM 005501 HD2+ ISM/CSM 005502 HeH+ Ismic fine structure 012501 C-atom Anions 012502 BH Cations 012502 C+ ChH	
JPL Catalog Search Form You need a Browser with Forms Capability to use this.	if the species tag is marked with a asterisk at the end, the temperature independent $S\mu^2$ is given instead of the intensity ${\bf I}$ at 300K (or other value)	013601 C-13 CnH2 013602 CH Complex molecules 013503 CH+ Cyano Comp. 013504 CH+, v=1-0 Cyclic Species 013505 CH+, v=2-0 v	
See README for output format.	Calculate the A values, S μ^2 or intensities with temperature 300 K 225 K 150 K 75 K 37.5 K 37.5 K 9.375 K		
What is the minimum frequency ? What is the maximum frequency ? What is the maximum number of lines ? 2000 (1000-1) The frequency units can be ^(a) GHz or ^(b) wavenumbers. If GHz is checked	Output as ● text sort by ● frequency ● intensity ● energie ● molecule intensity values as ♥ log values or ● graphic (● autoscale). Submit the query. Reset the form. Note: There are several entries in our catalog with high line densities. We recommend to inquire for lines of all molecules in small frequency region Back to Entries	es (by ⊛ tag © alphabetically) ons only.	
(with MHZ units). If wavenumber is checked, the frequency and error fields of What is the common log of the minimum strength in catalog units ? -500 What molecules should be included ? (use mouse control click to select mu	All 1001 H-atom 2001 D-atom 3001 HD 4001 H2D+ 7001 Li-6-H	↑Koln Univ. ←NASA	
Press this button to submit the query: Submit . To reset the form, press this button: Reset . 36/43 Return to home page.		~400 species	

(4) Diff Open 283

Conventional Absorption Spectrometer

(T)SUMIRE

(THz) Spectrometer Using superconductor MIxer REceiver

Receivers - 210-270 GHz (band 6) (SIS) (- 300-500 GHz (band7+8) (SIS)) - 0.9 THz band (HEB) Spectrometers XFFTS 2.5 GHz (0.075 MHz res.) x 4 0.5 GHz (0.015 MHz res.) x 4 (32,768 ch)

(Watanabe, Y., Sakai, N.+2019, in prep. Collaboration with UT, NAOJ, and UEC.)

(4) Difficulties 2&3

HDO/D₂O lines

(Watanabe, Y., Sakai, N.+2019, in prep. Collaboration with UT, NAOJ, and UEC)

(4) Difficulties 2&3

CH₃OH Test Spectrum taken by SUMIRE

Database: Extrapolation from low-frequency measurements

- => Significant error (Effect of higher order perturbation)
- => Miss-Assignment, Systematic error in Doppler velocities

Importance of direct spectroscopic measurement

41/43

(Watanabe, Y., Sakai, N.+2019, in prep. Collaboration with UT, NAOJ, and UEC)

• ALMA can now study molecular evolution in disk forming region.

- →Initial chemical composition of protoplanetary disk have large variety Interactive reaction processes between gas and dust (reaction rate, branching ratio, binding energy, desorption mechanism, diffusion mechanism.....etc.) Insufficiency of knowledge in molecular science.
- Isotope fractionation & Doppler analysis tells us fruitful information. We need "Data assimilation". Effect of Exchange reaction should be explored more.
- Importance of accurate rest frequencies.
- Higher excitation lines, rare species have large errors. Important for understanding formation pathways & for deriving column densities, identifications
 Lines of normal species still have errors. Important for Doppler analysis!