

Spectroscopy of non-rigid organic species: theory, experiments and application to astrochemistry.

M.L.Senent

Departamento de Química y Física Teóricas IEM-CSIC, Madrid, SPAIN U. Asociada GIFMAN (CSIC-U.Huelva)

DYMCOM

Dynamical Methods for COld Molecular collisions, from laboratory to beyond the Earth University Paris-Saclay, 4-29 Nov 2019

DEFINITIONS

Non-Rigid Molecules: <u>various minima</u> (conformers) in the Potential Energy Surface; large amplitude vibrational motions (such as torsional modes) intertransform the minima.

Semi-Rigid Molecules: <u>one minimum</u> in the Potential Energy Surface or various minima (isomers) that intertransform throught chemical reactions.

Non-rigid molecules

- N_m > 1 minima in the PES separate by relatively low Potential Energy Barriers
- Inter conversion of the minima through "feasible" large amplitude motions (LAMs) (without bond breaking).
- LAMs: usually very anharmonic.
- Tunneling effects split the vibrational levels

Methyl-groups tunneling effects A and E components of the levels

3 different behaviors (v=0, v=1) A, E components

(typical "egg box" of a two-methyl groups system)

 $300 < V_3 < 800 \text{ cm}^{-1}$

Why these molecules are relevant for astrophysics?

1) Some NRigM are abundant species in the ISM gas phase sources (few species such as propane and methanol exist in planetary atmospheres and planetoids)

- 1) Related to the problem of origin of life: **PREBIOTIC**
- 1) The internal motions responsible for the non-rigid properties display very low energy levels that can be populated at low temperatures.

(i.e. the torsional levels are separated typically by 100 to 200 cm⁻¹)

ISM Detected molecules

(gas phase)

10M (1970-1979)

Acetic acid 1997

10+1+1+11+15 = 38

11M (2000-2009)

Usual techniques

(FIR, Raman, and rotational spectroscopy; ab initio calculations)

FIR and Raman

Rotational spectroscopy

Theory and ab initio calculations

MW spectroscopy (0-30 GHz) Millimeter-wave spectroscopy (30-300 GHz) Sub-millimeter-wave spectroscopy (300-1000 GHz)

Ab initio calculations Highly correlated methods (if possible)

1- Structures, equilibrium rotational constants, and **dipole moments**

2- VPT2: anharmonic analysis (full-dimensional)

3-VARIATIONAL procedure of reduced dimensionality for the n large amplitude vibrations (LAM) responsible for the non-rigid properties.

Ground vibrational state rotational parameters i.e. rotational constants

 $\mathbf{B}_{0} = \mathbf{B}_{e} \left(\mathbf{CCSD}(\mathbf{T}) - \mathbf{F12} \right) + \Delta \mathbf{B}_{e}^{\text{core}} \left(\mathbf{CCSD}(\mathbf{T}) \right) + \Delta \mathbf{B}^{\text{vib}} \left(\mathbf{MP2} \right)$

1- Structures and equilibrium rotational constants and dipole moments

2- VPT2: full-dimensional anharmonic analysis

3-VARIATIONAL procedure for the n large amplitude vibrations (LAM) responsible for the non-rigid properties

(MOLPRO and GAUSSIAN)

	Re	otational con	stants (MH	Iz) of cis-metl	ıyl-format	
		7 set	s of experi	mental values	I	
Exp.	[1]	[2]	[3]	[4]	[5]	[6]
A	19983.05	19985.7623	19983.06	17522.36993	19141.92	19120.151
В	6914.4198	6914.757	6914.928	9323.547665	9112.39	9181.7185
С	5303.2477	5304.468	5304.236	5312.69996	5264.63	5254.7515

A^{calc}=19990.97 MHz; **B**^{exp}=6907.92 MHz; **C**^{exp}= 5301.47 MHz

 $|A^{calc}-A^{exp}| \sim 7 \text{ MHz}; |B^{calc}-B^{exp}| \sim 6 \text{ MHz}; |C^{calc}-C^{exp}| \sim 2 \text{ MHz}$

Senent et al. Astrophys. J (2005); Gámez et al. J.Phys.Chem.A (2019)

	R	otational con	stants (ME	Iz) of cis-meth	nyl-format	· ,
		7 set	s of experi	mental values		
Ref.	[2]	[3]	[4]	PAM	[6]	[7]
		CO P	CÔ	RAM?	Or the	Con 1/2
Α	19983.05	19985.7623	19983.06	17522.36993	19141.92	19120.151
B	6914.4198	6914.757	6914.928	9323.547665	9112.39	9181.7185
С	5303.2477	5304.468	5304.236	5312.69996	5264.63	5254.7515
	A ^{calc} =19 A ^{calc} -A ^{et}	990.97 MHz; ^{xp} ~ 7 MHz ;	B^{exp}=6907	7.92 MHz; C ^{ex} ~ 6 MHz; C ^{ca}	$x^{p} = 5301.47$	7 MHz 2 MHz

Senent et al. Astrophys. J (2005); Gámez et al. J.Phys.Chem.A (2019)

2) methyl isocyanate

	H5 C3 H7 H8	Methyl Isocya	nate(CH ₃ -NCO)	
	Calculated	Labora	tory rotational spect	roscopy
A ₀	76164.32	73849.2	78395(410)	128402(13)
B ₀	4411.89	4392.22	4442.982(49)	4414.6287(75)
C_0	4254.58	4256.66	4256.691(31)	4256.7452(71)
J. Ko D. T. J. Ce 115(Halfen, et al. Astro rnicharo et al, Astron	sc, (1986) phys. J. (2015) & Astrophys (2016) Methyl Cyan	(lab rotational spectroscopy) (Interstellar detection + lab r (Interstellar detection + lab r $ate(CH_3-OCN)$) rotational spectroscopy) rotational spectroscopy)
	Calculated	Labora	tory rotational spect	coscopy
A_0	39089.80	39042.4(8) 38	3989.07 (20)
B ₀	5314.78	5322.88(3) 5	322.25(15)
C_0	4816.35	4821.33(3) 4	821.31(13)
T	Sakaizuma, et al J. L. Kolesnikova, et	Mol.Spectrosc. (1990) al. Astron & Astrophys	(lab rotational	spectroscopy)

2) methyl isocyanate

3) isopropyl-cyanide

Kerkeni, Gámez, Senent, Feautrier, PCCP (2019)

	S	is	so-PrCN	
	Calc.	Exp.a	Exp. ^b	Exp. ^c
Ao	7939.497	7940.877174(31)	7940.8746(16)	7940.8723(43)
Bo	3964.2339	3968.087775(27)	3968.08888(52)	3968.087339(56)
Co	2898,4008	2901.053223(22)	2901.05458(53)	2901.052880(43)
$\Delta J x 10^6$	612.550	610.2684(153)	612.7(12)	609.971(16)
ΔJK x10 ³	12.433	12.17725(42)	12.1698(43)	12.176382(65)
$\Delta K \times 10^3$	-5.261	-5.23242(61)	-5.231(27)	-5.2110(11)
$d_1 x 10^6$	-238.167	-244.0908(69)	-243.93(11)	-244.012(10)
$d_2 \times 10^6$	-187.016	-189.2889(76)	-189.404(63)	-189.3655(54)
$H_{7} \times 10^{12}$	-1054.181	-584.83(151)		-633.0(22)
$H_{K} \ge 10^{9}$	12.057	-37.163(248)		PERCENT PERMIT
$H_{JK} = 10^9$	46.861	38.267(140)	34.7(16)	37.319(10)
HKJ x109	-45.824	10.968(281)		11.908(34)
$h_1 x 10^{12}$	-87.493	68.73(77)		44.0(14)
$h_2 x 10^{12}$	989.246	884.23(83)	931.0(72)	895.1(13)
h ₃ x10 ¹²	303.884	322.39(140)	326.0(33)	318.02(55)
μ_A	4.3609	4.0219 (50)		
μ_B	0.7570	0.4100.40470		
μ_{C}	0./5/5	0.0192 (207)		

a) Müller, Coutens, Walters, Grabow, & Schlemmer, J.Mol.Spectros. (2011)

b) Arenas, Gruet, Steber, Giuliano, & Schnell, PCCP (2017).

c) Kolesniková, Alonso, Mata, Cernicharo, & Alonso, ApJ (2017).

Variational procedure (LAMs)

1- Structures and equilibrium rotational constants and dipole moments.

2- VPT2: full-dimensional anharmonic analysis.

3-VARIATIONAL procedure of reduced dimensionality: large amplitude vibrations (LAMs) responsible for the non-rigid properties.

ENEDIM code

ENEDIM

Theoretical Chemistry Team: *I. Estructura de la Materia, CSIC, Madrid* http://tct1.iem.csic.es/PROGRAMAS.htm

+ Podolsky "trick"

 $2T = g^{-1/4} \sum_{\alpha=1}^{3} \sum_{\beta=1}^{3} P_{\alpha} g^{1/2} g_{(\alpha\beta)} P_{\beta} g^{-1/4}$ $+ g^{-1/4} \sum_{i=1}^{3N-6} \sum_{j=1}^{3N-6} p_{i} g^{1/2} g_{(i+3,j+3)} p_{j} g^{-1/4}$ $+ g^{-1/4} \sum_{\alpha=1}^{3} \sum_{i=1}^{3N-6} (p_{i} g^{1/2} g_{(i+3,\alpha)} p_{\alpha} + P_{\alpha} g^{1/2} g_{(\alpha,i+3)} p_{i}) g^{-1/4}$

Senent M.L. 1998, Chem.Phys.Lett., 296, 299.Senent M.L. 1998, J.Mol.Spectrosc., 191, 265.Senent M.L. 2001, Mol.Phys., 15, 1311.

Variational procedure $H_{RV} = T_{RV} + PES$

Quantum mechanical operator for J=0:

$$\hat{H}_{vib} = -\sum_{i}^{3N-6} \sum_{j}^{3N-6} \left(\frac{\partial}{\partial q_{i}}\right) B_{ij} \left(\frac{\partial}{\partial q_{j}}\right) + V(q_{1}, q_{2}, \dots, q_{3N-6}) + V'(q_{1}, q_{2}, \dots, q_{3N-6})$$

$$V' = \frac{\hbar^{2}}{8} \sum_{i}^{3N-6} \sum_{j}^{3N-6} \left[\left(\frac{\partial}{\partial q_{k}}\right) g_{kl} \left(\frac{\partial Lng}{\partial q_{k}}\right) - \left(\frac{\partial Lng}{\partial q_{k}}\right) g_{kl} \left(\frac{\partial}{\partial q_{k}}\right) \right]$$

$$+ \frac{\hbar^{2}}{8} \sum_{i}^{3N-6} \sum_{j}^{3N-6} \left(\frac{\partial Lng}{\partial q_{k}}\right) g_{kl} \left(\frac{\partial Lng}{\partial q_{k}}\right) g_{kl}$$

Quantum mechanical operator for J> 0:

$$\hat{H}_R = \sum_{\alpha=1}^3 \sum_{\beta=1}^3 g_{\alpha\beta} P_{\alpha} P_{\beta} \qquad \qquad \hat{H}_{RT} = \frac{i\hbar}{2} \sum_{\alpha=1}^3 \sum_{j=1}^{3N-6} \left(2g_{\alpha j} P_{\alpha} \frac{\partial}{\partial q_j} - \left(\frac{\partial g_{\alpha j}}{\partial q_j}\right) P_{\alpha} \right)$$

Variational procedure

Buta full-dimensional variational calculation is not realistic for complex molecules. What do do?

1) The n large amplitude vibrations (LAM') are considered to be independent on the remaining 3N-6-n coordinates.

2) The **PES** is determined from the energies of a grid of conformations selected for different values of the n coordinates.

3) The remaining 3N-6-n are optimized in all the conformations; this represents a partial way to take into consideration their small interactions with the LAM

4) As these 3N-6-n modes are expected "to be at the ZPVE" instead "at the PES minima", a ZPVE correction must be added.

$$\hat{H}_T = -\sum_i^n \sum_j^n \left(\frac{\partial}{\partial q_i}\right) B_{ij}\left(\frac{\partial}{\partial q_j}\right) + V(q_1, q_2, \dots, q_n) + V'(q_1, q_2, \dots, q_n) + V^{ZPVE}(q_1, q_2, \dots, q_n)$$

It works?.....Yes, when the interactions among the LAM and the remaining coordinates are relatively small. Otherwise:

$$H_{LAM} = H_{LAM'} + H_{mh} + H_{LAM',mh}$$

Variational procedure

Classification of the vibrational levels

- a) Symmetry (MSGs)
- b) Probability integrals (PES minima)

$$\int_{q}^{q'} \phi_i^* \phi_i dq_1 dq_2 dq_n$$

c) Expectation values of the one-dimensional Hamiltonians (vibrational modes)

$$\langle \mathbf{H}_{\mathbf{n}} \rangle = \langle \phi_{\mathbf{i}}^{*} \mathbf{H}_{\mathbf{n}} \phi_{\mathbf{i}} \rangle \qquad \qquad H_{n} = -B_{i}^{0} \frac{\partial^{2}}{\partial q_{n}^{2}} + V(q_{n})$$

d) Intensities (vibrational modes)

$$I = \frac{q}{3ReB} (E_j - E_i) (P_j - P_i) < \phi_i |\mu| \phi_j >^2$$

Variational procedure

Trial functions

For J=0: Fourier series, Harmonic Oscillator, Morse, Coon...etc Integrals: analytical methods and gaussian quadratures ...

For J> 0

$$\Psi(\theta,\Theta,\chi,q_1,q_2,...,q_n) = \sum_{n,J,K,m} C_{n,J,K,m} \phi_n^{vib} G_{J,\pm K,m}(\theta,\Theta,\chi)$$

 $G_{J,\pm K,m}(\theta,\Theta,\chi) = B(S_{J,+K,m}(\theta,\Theta,\chi)e^{i(+K)\chi} \pm B(S_{J,-K,m}(\theta,\Theta,\chi)e^{i(-K)\chi})e^{i(-K)\chi}$

For large systems:

- a) Contracted basis sets
- b) Symmetry adapted functions

MSG G₃₆

A1 A2 A3	$cos I\theta_1 cos J\theta_2 + cos J\theta_1 cos I\theta_2$ $sin I\theta_1 sin J\theta_2 + sin J\theta_1 sin I\theta_2$ $cos I\theta_1 cos J\theta_2 - cos J\theta_1 cos I\theta_2$ $sin I\theta_1 sin J\theta_2 - sin J\theta_1 sin I\theta_2$ $cos I\theta_1 sin J\theta_2 + sin J\theta_1 cos I\theta_2$	L≤K	I=3K J=3L
A ₄	$\frac{\sin 1\theta_1 \cos 3\theta_2 + \cos 3\theta_1 \sin 1\theta_2}{\cos 1\theta_1 \sin 3\theta_2 - \sin 3\theta_1 \cos 3\theta_2}$ $\frac{\sin 1\theta_1 \cos 3\theta_2 - \cos 3\theta_1 \sin 1\theta_2}{\sin 1\theta_2}$	L < K	
E ₁ E ₂	$\frac{\cos I\theta_1 \cos J\theta_2 \pm \sin I\theta_1 \sin J\theta_2 + \cos J\theta_1 \cos I\theta_2 \pm \sin J\theta_1 \sin I\theta_2}{\cos I\theta_1 \cos J\theta_2 \mp \sin I\theta_1 \sin J\theta_2 - \cos J\theta_1 \cos I\theta_2 \mp \sin J\theta_1 \sin I\theta_2}$ $\frac{\cos I\theta_1 \cos J\theta_2 \pm \sin I\theta_1 \sin J\theta_2 - \cos J\theta_1 \cos I\theta_2 \mp \sin J\theta_1 \sin I\theta_2}{\cos I\theta_1 \cos I\theta_2 \pm \sin I\theta_1 \sin I\theta_2 - \cos J\theta_1 \cos I\theta_2 \mp \sin J\theta_1 \sin I\theta_2}$	L≤K	
E ₃ E ₄	$\frac{\cos I\theta_1 \sin J\theta_2 \mp \sin I\theta_1 \cos J\theta_2 + \sin J\theta_1 \cos I\theta_2 \pm \cos J\theta_1 \sin I\theta_2}{\cos I\theta_1 \cos J\theta_2 \mp \sin I\theta_1 \sin J\theta_2 + \cos J\theta_1 \cos I\theta_2 \mp \sin J\theta_1 \sin I\theta_2}$ $\frac{\cos I\theta_1 \sin J\theta_2 \pm \sin I\theta_1 \cos J\theta_2 + \sin J\theta_1 \cos I\theta_2 \pm \cos J\theta_1 \sin I\theta_2}{\cos I\theta_1 \cos J\theta_2 \mp \sin I\theta_1 \sin J\theta_2 - \cos J\theta_1 \cos I\theta_2 \pm \sin J\theta_1 \sin I\theta_2}$	L>K	I=3K±δ J=3L+δ δ=±1
G	$\frac{\cos I\theta_1 \sin J\theta_2 \pm \sin I\theta_1 \cos J\theta_2 - \sin J\theta_1 \cos I\theta_2 + \cos J\theta_1 \sin I\theta_2}{\cos I\theta_1 \cos J\theta_2}$ $\frac{\cos I\theta_1 \sin J\theta_2}{\cos I\theta_1 \sin J\theta_2}$ $\frac{\sin I\theta_1 \cos J\theta_2}{\sin I\theta_1 \cos J\theta_2}$	L <k< td=""><td>I=3K J=3L+δ δ=±1</td></k<>	I=3K J=3L+δ δ=±1
	$cos I\theta_1 cos J\theta_2$ sin I\text{\$\eta_1\$} sin J\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$0\$}}\$}}}}}}} cos I\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\$}}\$}}}}} \\ cos I\text{\$\text{\$\$\$\$}_1 sin J\text{\$\text{\$\$\$}_2\$}} \\ sin I\text{\$\$\$\$\$\$\$\$\$\$\$\$ cos J\text{\$\$\$\$\$}_2\$}		I=3K+δ J=3L δ=±1

3D-WF of DME (G₃₆)
$$\Psi^{3D} = \Psi^{2D} \sum_{i} A_i \alpha^i$$

1) 3 internal rotations intertransform 18 inequivalent minima (MSG G_{18})

2) Astrophysical detection: Tercero, Kleiner, Cernicharo, Nguyen, López, & Muñoz Caro, ApJ (2013)

3) Laboratory rotational spectroscopy and assignments in **2D**: Tudorie, Kleiner et al. J.Mol.Spectrosc. (2011)

4) 3D (\rightarrow 2D) Ab initio calculations: Senent, Dominguez-Gómez, Carvajal & Kleiner, J.Chem.Phys., 138, 044319 (2013)

3D-torsional Hamiltonian

$$\mathcal{H}(\alpha,\theta_1,\theta_2) = -\sum_{i=1}^3 \sum_{j=1}^3 \frac{\delta}{\delta q_i} Bq_i q_j \ (\alpha,\theta_1,\theta_2) \frac{\delta}{\delta q_j} + V(\alpha,\theta_1,\theta_2) + V'(\alpha,\theta_1,\theta_2) + V^{ZPVE}(\alpha,\theta_1,\theta_2)$$

$$q_{\dot{\nu}} \ q_j = \alpha, \theta_1, \theta_2$$

3D-Potential energy surface

148 geometries optimized with CCSD/VTZ; CCSD(T)/VTZ Energies, MP2/VTZ ZPVE correction:

$$V(\alpha, \theta_1, \theta_2) = \sum_{N=0}^{9} \sum_{M=0}^{2} \sum_{L=0}^{2} A_{N3M3L} \cos(N\alpha) \cos(3M\theta_1) \cos(3L\theta_2) + \sum_{N=0}^{9} A_{N-3-3} \cos(N\alpha) \sin(3\theta_1) \sin(3\theta_2) + \sum_{N=1}^{8} \sum_{M=0}^{2} A_{-N3M-3} \sin(N\alpha) \cos(3M\theta_1) \sin(3\theta_2) + \sum_{N=1}^{8} \sum_{L=0}^{2} A_{-N-33} \sin(N\alpha) \sin(3\theta_1) \cos(3L\theta_2)$$

Hamiltonian matrix size: 5493 (A_1) 5492 (A_2), 10985 (E_1 , E_2 , E_3 , E_4)

4) methyl-acetate

ZPVE

000	A ₁	0.00
	$\mathbf{E_1}$	1.08
	E_2	0.01
	E ₃	1.09
	$\mathbf{E_4}$	1.09

C-CH₃ (v₂₇)

		·
010	A ₂	63.74
	$\mathbf{E_1}$	51.93
	$\mathbf{E_2}$	63.74
	E_3	51.93
	$\mathbf{E_4}$	51.93
020	$\mathbf{A_1}$	87.35
	$\mathbf{E_1}$	113.77
	E_2	87.35
	E_3	113.77
	$\mathbf{E_4}$	113.77

O-CH₃ (v_{26})

001	A ₂	136.09
	$\mathbf{E_1}$	137.98
	$\mathbf{E_2}$	135.72
	E_3	136.73
	$\mathbf{E_4}$	136.73
002	\mathbf{A}_{1}	248.0

C-O torsion (v_{25})

100	A_2	175.81	
	$\mathbf{E_1}$	178.62	
	$\mathbf{E_2}$	175.75	
	E ₃	178.56	
	$\mathbf{E_4}$	178.56	
200	\mathbf{A}_{1}	348.6	

 $(\sin n\theta_1 \sin m\theta_2)$?

2D PES and kinetic parameters

Ab initio CCSD(T)/VTZ 3D \rightarrow 2D ($\alpha = 0^{\circ}$)

Senent, Dominguez-Gómez, Carvajal & Kleiner, J.Chem.Phys., 138, 044319 (2013)

 $V(\theta_1, \theta_2) = 269.642 - 206.919 \cos 3\theta_2 - 13.447 \cos 6\theta_2 - 50.081 \cos 3\theta_1 + 0.707 \cos \theta_1 \cos 3\theta_2 - 0.227 \cos 3\theta_1 \cos 6\theta_2 + 0.548 \cos 6\theta_1 - 0.36 \cos 6\theta_1 \cos 3\theta_2 + 0.112 \cos 6\theta_1 \cos 6\theta_2 - 6.489 \sin 3\theta_1 \sin 3\theta_2$

 $B_{\theta 1\theta 1} = 5.66 \text{ cm}^{-1}; B_{\theta 1\theta 2} = 0.34 \text{ cm}^{-1}; B_{\theta 2\theta 2} = 5.64 \text{ cm}^{-1}$

Fitted (effective Hamiltonian)

more than 800 microwave and millimeter-wave transitions Tudorie, Kleiner, Hougen, Melandri, Sutikdja, & Stahl, J.Mol.Spectrosc. (2011)

 $V(\theta_1, \theta_2) = 258.418 - 207.548 \cos 3\theta_2 - 47.344 \cos 3\theta_1 - 3.526 \cos 3\theta_1 \cos 3\theta_2 + 34.24 \sin 3\theta_1 \sin 3\theta_2$

 $B_{\theta 1 \theta 1} = 5.554669 \text{ cm}^{-1}; B_{\theta 1 \theta 2} = 0.332 \text{ cm}^{-1}; B_{\theta 2 \theta 2} = 5.523464 \text{ cm}^{-1}$

Non-degener	rate torsi	ional energy lev	vels (in cm ⁻¹)
V V'	Sym.	Ab initio [I]	Fitted [II]
00 ^a	A_1	0.0	0.0
10	A ₂	64.9	62.6
20	A_1	83.5	83.1
01	A ₂	141.2	133.1
11	A_1	205.4	189.4
30	A ₂	221.1	205.6
40	A_1	223.4	222.5
21	A ₂	226.2	226.6
ZPVE (a)		107.0	76.0

(I) Senent, Dominguez-Gómez, Carvajal & Kleiner, J.Chem.Phys., 138, 044319 (2013)
(II) Tudorie, Kleiner, Hougen, Melandri, Sutikdja, & Stahl, J.Mol.Spectrosc. (2011)

	Ε	2(456)	2(123)	2(123)(456)	2(123)(465)	9(23)(56)*	$C_{3}^{1}xC_{3}^{2}$
A ₁	1	1	1	1	1	1	AA
A_2	1	1	1	1	1	-1	AA
E_1	2	2	-1	-1	-1	0	EA
E ₂	2	-1	2	-1	-1	0	AE
E_3	2	-1	-1	2	-1	0	EE
E_4	2	-1	-1	-1	2	0	EE

(deg)

- 1) **PES= 27 minima (3 torsions)**
- 2) Symmetry= G₁₈ and Cs

3) Theory: Senent, Ruiz, Dominguez-Gómez, & Villa, J.Chem.Phys. (2009); Chem.Phys., (2010)

 θ_1 (O-CH₃) V₃ (trans)=871 cm⁻¹ V₃ (trans) =1079 cm⁻¹

Previous experimental work:

FIR and RAMAN, Durig et al., Struct.Chem., (2002)

ROTATIONAL SPECTROSCOPY

The MW in the ground state

Fuchs et al., ApJ (2002) Tsunekawa et al., Molecules (2003)

The MW in the first skeletal torsionally excited state ($v_{30}=1$)

Kobayashi et al., J.Mol.Spectrosc. (2008)

Analysis of the pure-rotational spectrum in the $v_{28}=1$ excited torsional state Kobayashi, et al. J.Mol.Spectrosc. (2011)

The MW in the $v_{29}=1$ excited torsional state

Kobayashi, et al. J.Mol.Spectrosc. (2009)

Reanalysis of the ground and three torsional excited states

Kobayashi et al., J.Mol. Spectrosc. (2016)

5. Ethyl-Methyl-Ether

Assign.	Symm.	ν	Intensity	exp	Assign.	Symm.	ν	Intensity	exp
			(273°K)	v (intens)				(273°K)	v (intens)
				Skeletal	torsion				
00 →100	$A_1 \rightarrow A_2$	115.3	0.41 10-4	115.40 (vs)	300→400	$A_2 \rightarrow A_1$	101.6	0.34 10-4	103.54
	$E_1 \rightarrow E_1$	115.3	0.81 10-4			$E_1 \rightarrow E_1$	101.6	0.68 10-4	
	$E_2 \rightarrow E_2$	115.3	0.81 10-4			$E_2 \rightarrow E_2$	101.7	0.68 10-4	
	$E_3 \rightarrow E_3$	115.3	0.41 10-4			$E_3 \rightarrow E_3$	102.1	0.34 10-4	
	$E_4 \rightarrow E_4$	115.3	0.41 10-4			$E_4 \rightarrow E_4$	102.1	$0.34 10^{-4}$	
$00 \rightarrow 200$	$A_2 \rightarrow A_1$	110.9	0.48 10-4	111.77	400 → 500	$A_1 \rightarrow A_2$	96.4	0.27 10-4	99.0
	$E_1 \rightarrow E_1$	111.1	0.96 10-4			$E_1 \rightarrow E_1$	96.4	0.34 10-4	
	$E_2 \rightarrow E_2$	111.1	0.96 10-4			E2->E2	96.4	0.34 10-4	
	$E_3 \rightarrow E_3$	111.1	0.48 10-4			$E_3 \rightarrow E_3$	96.4	0.27 10-4	
	$E_4 \rightarrow E_4$	111.1	0.48 10-4			$E_4 \rightarrow E_4$	96.4	$0.27 \ 10^{-4}$	
.00 → 3 00	$A_1 \rightarrow A_2$	106.4	0.42 10-4	107.80					
	$E_1 \rightarrow E_1$	106.4	0.84 10-4						
	$E_2 \rightarrow E_2$	106.5	0.84 10-4						
	$E_3 \rightarrow E_3$	106.1	0.42 10-4						
	$E_4 \rightarrow E_4$	106.1	0.42 10-4						
				Methyl 1	orsions				
00 →010	$A_1 \rightarrow A_2$	206.6	0.31 104	202 (m)	$000 \rightarrow 001$	$A_1 \rightarrow A_2$	255.2	0.24 10-5	248 (m)
	$E_1 \rightarrow E_1$	206.6	0.61 10-4			$E_1 \rightarrow E_1$	255.2	$0.47 \ 10^{-5}$	
	$E_2 \rightarrow E_2$	206.6	0.61 10-4			$E_2 \rightarrow E_2$	255.2	$0.47 \ 10^{-5}$	
	$E_3 \rightarrow E_3$	206.6	0.31 10-4			$E_3 \rightarrow E_3$	255.2	0.24 10-5	
	$E_4 \rightarrow E_4$	206.6	0.31 10-4			$E_4 \rightarrow E_4$	255.2	0.24 10-5	
$10 \rightarrow 020$	$A_2 \rightarrow A_1$	195.2	0.19 10-4		$001 \rightarrow 002$	$A_2 \rightarrow A_1$	242.3	0.19 10-5	
	$E_1 \rightarrow E_1$	195.2	0.19 104			$E_1 \rightarrow E_1$	242.3	0.38 10-5	
	$E_2 \rightarrow E_2$	195.5	0.38 104			$E_2 \rightarrow E_2$	242.3	0.38 10-5	
	$E_3 \rightarrow E_3$	195.5	0.38 10			$E_3 \rightarrow E_3$	242.3	0.19 10 *	
00 .020	$E_4 \rightarrow E_4$	193.3	0.19 10		007 .002	$E_4 \rightarrow E_4$	242.5	0.19 10	
20 →030	$A_1 \rightarrow A_2$ $F \rightarrow F$	170.2	0.90 10		002 →003	$A_1 \rightarrow A_2$ $F \rightarrow F$	230.0	< 10	
	$\mathbf{E}_1 \rightarrow \mathbf{E}_1$ $\mathbf{E} \rightarrow \mathbf{E}$	170.4	0.18 10			$E_1 \rightarrow E_1$ $E \rightarrow F$	230.0	~ 10-5	
	$E_2 \rightarrow E_2$ $F \rightarrow F$	179.4	0.10 10			$E_2 \rightarrow E_2$ $E \rightarrow F$	230.1	< 10-5	
	$E_3 \rightarrow E_3$ $F_1 \rightarrow F_3$	179.4	0.90 10-5			$E_3 \rightarrow E_3$ $F_1 \rightarrow F_2$	230.1	< 10-5	
	$\mathbf{L}_4 \rightarrow \mathbf{L}_4$	1/2.4	0.90 10	Combinat	ion hands	$\mathbf{L}_4 \rightarrow \mathbf{L}_4$	230.1	~10	
$00 \rightarrow 110$	$A_1 \rightarrow A_2$	206.0	0.15 10-4	Comoinun	$210 \rightarrow 310$	$A_1 \rightarrow A_1$	106.1	0.15 10-4	
10_110	A	114.7	0 14 10-4		101 - 201	A	110.1	0 15 10-4	
	$A_2 \rightarrow A_1$	114.7	0.14 10		$201 \rightarrow 201$	A A	102.0	0.15 10	
$01 \rightarrow 101$	$A_2 \rightarrow A_1$	114.0	0.11 10		$201 \rightarrow 301$	$A_2 \rightarrow A_1$	105.8	0.11 10	
$.10 \rightarrow 210$	$A_1 \rightarrow A_2$	116.0	0.16 10-4		$001 \rightarrow 011$	$A_2 \rightarrow A_1$	190.9	$0.65 10^{-5}$	

Ab initio CCCSD(T)/CCSD/VTZ+ZPVE 300 geometries

	F	undamen	tal frequen (intensities)	cies in cn)	ľ ¹	
	We sug	gest a new a	issignment fo	or CH3-O-C	CH ₂ -CH ₃	
Exp. (Durig et al. 2002)		CH3-0-CH	2-CH3			
OLD assign (Durig et al 2002) NEW assign (this paper)	CCSD(T)	Exp (OLD)	10	Δ		
	<u>k</u> <u>1</u>		trans-EME			ste
\mathbf{v}_{28} (C-CH ₃ -torsion)	255.2	278				
\mathbf{v}_{29} (O-CH ₃ -torsion)	206.5	248				
v ₃₀ (O- C ₂ H ₅ -torsion)	115.3	115.4	li I	40		1.42
		ci	s-gauche-EM	ÍE –		
\mathbf{v}_{28} (C-CH ₃ -torsion)	243.8 243.8		21			
\mathbf{v}_{29} (O-CH ₃ -torsion)	192.5 192.5	202				
\mathbf{v}_{30} (O- C_2H_5 -torsion)	91.0 91.0	93.56				

Fundamental frequencies in cm ⁻¹ (intensities)											
We suggest a new assignment for CH ₃ -O-CH ₂ -CH ₃											
Exp. (Durig et al. 2002)		СН3-0-СН	2-CH3			12	19.19				
OLD assign (Durig et al 2002) NEW assign (this paper)	CCSD(T)	Exp (OLD)	Exp (NEW)	Δ							
trans-EME											
\mathbf{v}_{28} (C-CH ₃ -torsion)	255.2	278	248	7.2							
\mathbf{v}_{29} (O-CH ₃ -torsion)	206.5	248	202	4.5							
\mathbf{v}_{30} (O- C_2H_5 -torsion)	115.3	115.4	115.4	-0.1							
		ci	s-gauche-EM	a		а.	1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -				
\mathbf{v}_{28} (C-CH ₃ -torsion)	243.8 243.8							5			
\mathbf{v}_{29} (O-CH ₃ -torsion)	192.5 192.5	202 🤌									
\mathbf{v}_{30} (O- C_2H_5 -torsion)	91.0 91.0	93.56	93.56	-2.6							

Fundamental frequencies in cm ⁻¹ (intensities)											
We suggest a new assignment for CH ₃ -O-CH ₂ -CH ₃											
Exp. (Durig et al. 2002)		CH3-0-CH2	-CH3			, 1	7527	80			
OLD assign (Durig et al 2002) NEW assign (this paper)	CCSD(T)	Exp (OLD)	Exp (NEW)	Δ							
trans-EME											
\mathbf{v}_{28} (C-CH ₃ -torsion)	255.2	278	248 (m)	7.2							
\mathbf{v}_{29} (O-CH ₃ -torsion)	206.5	248 (m)	202 (m)	4.5							
\mathbf{v}_{30} (O- C_2H_5 -torsion)	115.3	115.4 (vs)	115.4 (vs)	-0.1							
		cis	-gauche-EM	ſΕ				12			
\mathbf{v}_{28} (C-CH ₃ -torsion)	243.8 243.8										
\mathbf{v}_{29} (O-CH ₃ -torsion)	192.5 192.5	202 (m)									
\mathbf{v}_{30} (O- C_2H_5 -torsion)	91.0 91.0	93.56 (m)	93.56 (m)	-2.6							

Fundamental frequencies in cm ⁻¹ (intensities)												
We suggest a new assignment for CH ₃ -O-CH ₂ -CH ₃												
Exp (Durig et al. 2002)		CH3-0-CH2	-CH3			CD ₃ -O-CH ₂	-CH3					
OLD assign (Durig et al 2002) NEW assign (this paper)	CCSD(T)	$D(T) \begin{bmatrix} Exp \\ (OLD) \end{bmatrix} \begin{bmatrix} Exp \\ (NEW) \end{bmatrix} \Delta$		Δ	CCSD(T)	Exp (OLD)	Exp (NEW)	Δ				
trans-EME												
\mathbf{v}_{28} (C-CH ₃ -torsion)	255.2	278	248 (m)	7.2	249.0	241	241	8.0				
\mathbf{v}_{29} (O-CH ₃ -torsion)	206.5	248 (m)	202 (m)	4.5	166.6	163	163	3.6				
\mathbf{v}_{30} (O- C_2H_5 -torsion)	115.3	115.4 (vs)	115.4 (vs)	-0.1	106.2	106	106	0.2				
		cis	-gauche-EM	E			14. S					
\mathbf{v}_{28} (C-CH ₃ -torsion)	243.8 243.8		-									
\mathbf{v}_{29} (O-CH ₃ -torsion)	192.5 192.5	202 (m)										
v_{30} (O- C_2H_5 -torsion)	91.0 91.0	93.56 (m)	93.56 (m)	-2.6								

6-dimethyl-ether

2-torsional modes

 $\theta_1 - \theta_2$ IR active V_{15}

 $\begin{array}{l} \theta_1 + \theta_2 & {}^{\text{dark}} \\ \nu_{11} & \end{array}$

42 years of DME (1977-2019)

Groner & Durig, J. Chem. Phys. (1977)2D

Our old ab initio calculations (Senent et al. 1995)

Our recent ab initio calculations (2011-2014)......3D

- 1) M.Villa et al. J.Phys.Chem.A (2011) (main isotopologue)
- 2) M.L.Senent et al. J.Phys.Chem.A. (2012) (DME-d₆ and DME-d₃)
- 3) M. Carvajal et al. J.Mol.Spectrosc. (2012) (¹³DME)
- 4) M.Carvajal et al. Chem.Phys.Lett. (2014) (DME-d1)

New measurements and assignments based on ab initio calculations (ApJS-2019)

NEW 3D studies (motivated by the astrophysical interest of isotopologues)

↑↑↑ level of theory (Objective: ∑ accuracy)

1995 $\mathcal{H}(\alpha,\theta_{1},\theta_{2}) = -\sum_{i=1}^{3}\sum_{j=1}^{3}\frac{\delta}{\delta i}B_{\alpha,\theta_{1},\theta_{2}}(\alpha,\theta_{1},\theta_{2})\frac{\delta}{\delta j} + V^{MP2}(\alpha,\theta_{1},\theta_{2})$ 2010-2011 $\mathcal{H}(\alpha,\theta_{1},\theta_{2}) = -\sum_{i=1}^{3}\sum_{j=1}^{3}\frac{\delta}{\delta i}B_{\alpha,\theta_{1},\theta_{2}}(\alpha,\theta_{1},\theta_{2})\frac{\delta}{\delta j} + V^{CCSD(T)}(\alpha,\theta_{1},\theta_{2}) + V^{ZPVE}_{CCSD(T)}(\alpha,\theta_{1},\theta_{2}) + V^{ZPVE}_{MP2}(\alpha,\theta_{1},\theta_{2})$ Mass dependent Mass dependent

New Values (CCSD(T)/AVTZ)) Main isotopologue

		3D MP4	3D CCSD(T)	Fitted	Exp. Groner et al. 1977							
IR												
$A_1 \rightarrow A_2$	V ₁₅	241.2	244.7	241.8	241.0							
$A_1 \rightarrow A_2$	$2v_{15} \leftarrow v_{15}$	239.6	242.4	239.1	240.2							
$A_1 \rightarrow A_2$	3 v_{15 ←}2v₁₅	237.6	241.1	237.0	238.9							
		Raman	l									
$A_1 \rightarrow A_1$	2 v ₁₅	481.2	487.3个	480.9 🗸	481.2							
$A_1 \rightarrow A_1$	2 v ₁₁	393.2	388.4↓	391.1 🗸	395.5							
COC bending												
$A_1 \rightarrow A_1$	v ₁₅	429.4	421.6	412.1	412.0							

Fitting procedure: refinement of the:

- a) The α bending coordinate $\alpha' = \alpha (1 + F/100)$
- b) The parameters of the $B_{\alpha\alpha}$ kinetic expanssion

Accuracy =	1
	level of theory

DME. Torsional overtones (Raman)

New Assignment (2019) of $2v_{11}$ (385.2 cm⁻¹)

	Groner Durig 1977	3D MP4	3D CCSD(T)	FIT 2011	New FIT 2019	New Raman 2019					
IR											
v ₁₅	241.0	241.2	244.7	241.8	242.6						
2 v ₁₅ ← v ₁₅	240.2	239.6	242.4	239.1	239.3						
3 v ₁₅ ←2v ₁₅	238.9	237.6	241.1	237.0	236.0						
			RAMAN								
2ν ₁₅	481.2	481.2	487.3个	480.9	481.9	482.0±0.2					
2 v ₁₁	395.5	393.2	388.4	391.1	386.5	385.2±0.2					
COC bending											
v ₇	412.0	429.4	421.6 个	412.1	413.0	412.5±0.2					

Fernández-Tejeda-Carvajal-Senent, ApJS (2019)

7- Ethylene glycol

 $V^{Gauche \rightarrow Trans} \sim 1800 \text{ cm}^{-1}$

CCSD(T)-F12/AVTZ + ZPVE(MP2/AVTZ)

Potential energy surface (3D-PES)

- The molecule can be considered a triple rotor system where intramolecular hydrogen bonds govern the relative stabilities of the favoured conformers and their internal dynamics.
- Their intertransformation processes imply the breaking of weak bonds and can occur through more or less relatively high energy barriers which can cause relevant tunnelling effects.
- The main part of the conformers corresponds to double minima.
- Moreover, the C-C bond internal rotation varies de relative orientation of two identical CH₂OH groups. To classify the rovibrational energy levels and their splittings, a double Molecular Symmetry Group (MSG) is required
- Accordingly, all this features produce a potential energy surface (PES) of 50 minima very anisotropic in the *gauche* region and very isotropic in the *trans* region.

7- Ethylene glycol

gauche

trans

7- Ethylene glycol

$$\begin{split} H(2\alpha,\theta_1,\theta_2) &= -\sum_{i=1}^3 \sum_{j=1}^3 \left(\frac{\partial}{\partial q_i}\right) B_{q_i q_j} \left(2\alpha,\theta_1,\theta_2\right) \left(\frac{\partial}{\partial q_j}\right) \\ &+ V^{eff}(2\alpha,\theta_1,\theta_2) \end{split}$$

$$\mathbf{V}^{\text{eff}}(2\alpha,\,\theta_1,\,\theta_2) = \mathbf{V}(2\alpha,\,\theta_1,\,\theta_2) + \mathbf{V}'(2\alpha,\,\theta_1,\,\theta_2) + \mathbf{V}^{\text{ZPVE}}(2\alpha,\,\theta_1,\,\theta_2)$$

The 3D-PES (see Figure 3) was constructed using a set of 322 energies calculated with CCSD(T)-F12/AVTZ-F12

Grid : $\Delta \theta_1$, $\Delta \theta_2 = 45$, 135, ... $\Delta \theta = 45$, 135, ... in the trans region, and $\Delta \theta = 22.5$, 45, 67.5, in the anisotropic gauche region.

Trial function and Assignment of the calculated energy levels ?????

٨	1-214	$\cos J\alpha \left(\cos N\theta_1 \cos L\theta_2 + \cos L\theta_1 \cos N\theta_2\right)$	N=0,1,2,	L≤N	
A_1	J-ZIVI	$\cos J\alpha \left(sin N\theta_1 sin L\theta_2 + sin L\theta_1 sin N\theta_2 \right)$	N=0,1,2,	L≤N	
Α	I=2N/+1	$\sin J\alpha \left(\sin N\theta_1 \cos L\theta_2 + \cos L\theta_1 \sin N\theta_2 \right)$	N=1,2,	L≤N	
Ald	J 2101 1	$\sin J\alpha (\cos N\theta_1 \sin L\theta_2 + \sin L\theta_1 \cos N\theta_2)$	N=1,2,	L <n< td=""><td></td></n<>	
۸	1=214	$\cos J\alpha (\sin N\theta_1 \cos L\theta_2 - \cos L\theta_1 \sin N\theta_2)$	N=0,1,2,	L≤N	
Λ_2	J-21VI	$\cos J\alpha (\cos N\theta_1 \sin L\theta_2 - \sin L\theta_1 \cos N\theta_2)$	N=0,1,2,	L <n< td=""><td></td></n<>	
۸	I-2N/+1	$sin \operatorname{Ja} (\cos \operatorname{N}\theta_1 \cos \operatorname{L}\theta_2 - \cos \operatorname{L}\theta_1 \cos \operatorname{N}\theta_2)$	N=1,2,	L <n< td=""><td></td></n<>	
A _{2d}	J-ZIVI I	$sin \operatorname{Ja}(sin \operatorname{N}\theta_1 sin \operatorname{L}\theta_2 - sin \operatorname{L}\theta_1 sin \operatorname{N}\theta_2)$	N=1,2,	L <n< td=""><td></td></n<>	
۸	1-214	$\cos J\alpha (\sin N\theta_1 \cos L\theta_2 + \cos L\theta_1 \sin N\theta_2)$	N=0,1,2,	L≤N	
A_3	J-21VI	$\cos J\alpha (\cos N\theta_1 \sin L\theta_2 + \sin L\theta_1 \cos N\theta_2)$	N=0,1,2,	L <n< td=""><td></td></n<>	
٨	I-2N4+1	$sin \operatorname{Ja}(\cos \operatorname{N}\theta_1 \cos \operatorname{L}\theta_2 + \cos \operatorname{L}\theta_1 \cos \operatorname{N}\theta_2)$	N=1,2,	L≤N	O N N N
A _{3d}	J-ZIVI I	$sin Ja (sin N\theta_1 sin L\theta_2 + sin L\theta_1 sin N\theta_2)$	N=1,2,	L <n< td=""><td>ONLY:</td></n<>	ONLY:
٨	1-214	$\cos J\alpha$ ($\cos N\theta_1 \cos L\theta_2 - \cos L\theta_1 \cos N\theta_2$)	N=0,1,2,	L <n< td=""><td></td></n<>	
A_4	J-ZIVI	$\cos J\alpha (\sin N\theta_1 \sin L\theta_2 - \sin L\theta_1 \sin N\theta_2)$	N=0,1,2,	L <n< td=""><td>2 Representations</td></n<>	2 Representations
٨	1-21/1-1	$sin \operatorname{Ja}(sin \operatorname{N}\theta_1 \cos \operatorname{L}\theta_2 - \cos \operatorname{L}\theta_1 \sin \operatorname{N}\theta_2)$	N=1,2,	L≤N	
T _{4d}	J-21VI+1	$sin \operatorname{Ja} (\cos \operatorname{N}\theta_1 \sin \operatorname{L}\theta_2 - \sin \operatorname{L}\theta_1 \cos \operatorname{N}\theta_2)$	N=1,2,	L <n< td=""><td>A1 and A2 iiiii</td></n<>	A1 and A2 iiiii

1-Symmetry:

CH₂OH-CH₂OH CH₂OD-CH₂OD

Hamitonian matrix dimension (98865 x 98865)

2-Contrated basis functions: (convergence \leftarrow 13 contrated functions)

$$\varphi_{vNL}(2\alpha,\theta_1,\theta_2) = \sum_{M} \varphi_M(2M\alpha) \left[\varphi_N(N\theta_1)\varphi_L(L\theta_2) \pm \varphi_L(L\theta_1)\varphi_N(N\theta_2)\right]$$

Reduction of the Hamitonian matrix dimension (19773 x 19773 \leftarrow 98865 x 98865)

3-Probability integrals and expectation values of one-dimensional Hamiltonians 4-Transition dipol moments ← Intensities

Matrix elements

 $<\!\!\phi_{\mathsf{M}(2\alpha)}\,\varphi_{\mathsf{N}(\theta1,\theta2)}\mid\!\mathsf{H}\mid\phi_{\mathsf{M}'(2\alpha)}\,\varphi_{\mathsf{N}'(\theta1,\theta2)}\!>$

M=1 M'=1 L=0	L=1	L=2	L=3	L=4	L=5			L= 1	M-M'	CH ₂ OH-0	CH ₂ OH	
	M=2 M'=2	L=1	L=2	L=3	L=4		L=0	L=1	L=2	L=3	L=4	
	L=0					A1	276.2692	263.7798	263.9834	263.9503	263.9478	
		M=3 M'=3	L=1	L=2	L=3	A2 A2-A1	276.5530 0.2838	264.1072 0.3274	264.3094 0.3260	264.2764 0.3261	264.2739 0.3261	
		L=0				A1	425.0072	406.1971	405.7074	405.6230	405.6256	
			M=4	1-1	1-1	1-2	A2	425.3583	406.3802	405.8813	405.7963	405.7989
			M'=4 L=0		L-2	A1 A2	444.0069 457.1958	431.5899 440.2541	431.6899 441.0730	431.6407 440.9607	431.6401 440.9468	
				M=5 M'=5	L=1	A1 A2	468.6974 469.0040	440.6974 446.7797	440.9601 446.3267	440.8618 446.2944	440.8463 446.2963	
				L=0		A1	537.9298	526.8428	526.3336	526.2930	526.2936	
					M=6	A2	589.7966	5772747	576.8800	576.8170	576.8204	
					M′=6 L=0							

...etc (convergence \leftarrow 13 contrated functions)

7- Ethylene glycol

(СС, ОН, ОН)		CH ₂ OH-CH ₂ OH	CH ₂ OD-CH ₂ OD	CH ₂ OH-CH ₂ OD
000	A1	0.000	0.000	0.000
	A2	0.326 (exp=0.2)	0.712	5.089
	A1	141.678	138.393	129.991
	A2	141.851	137.482	139.503
010	A1	167.692	139.961	150.903
	A2	182.345	142.026	162.695
	A1	262.346	228.633	283.673
	A2	312.873	247.071	300.090
100	A1	176.899	172.801	171.172
	A2	176.999	175.020	179.029
	A1	324.184	308.578	309.520
	A2	325.928	303.022	321.136

16 components

7- Ethylene glycol

