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Programme

1. Introduction to open quantum systems

1.1 Position of the problem

1.2 Simple approaches

1.3 The density operator (reminder ... or not)

2. Master equation : The statistical physics approach

2.1 Formal derivation of the master equation

2.2 Statistical equilibrium : The damped harmonic oscillator

2.3 Driven systems : The Optical Bloch equations

3. The quantum information approach

3.1 Kraus operators

3.2 Lindblad form of the master equation

4. Decoherence and its control

4.1 Decoherence of the harmonic oscillator

4.2 Pointer states

4.3 Discussion
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Summary

The density operator, which generalizes the notion of « state » of a quantum 
system, is the appropriate framework to describe open quantum systems

- Two equivalent formulations (S may be in a set of possible kets with a        
   certain probability distribution ; S is entangled with B and its density          
   operator is found by tracing out the degrees of freedom of B)

- The dynamics of an isolated system is
   governed by the quantum Liouville equation iℏ

d ρ̂S

dt
=[ Ĥ S(t ) ,ρ̂S ]

Lecture 1

Wave function approaches (perturbation theory and Weisskopf-Wigner) 
allowed us to identify the main concepts at the heart of the dynamics of open 
quantum systems :

- Separation of time scales due to a weak coupling between S and B

- Onset of a Markov process (loss of memory)

- Relaxation of the initial state (crucial role of the continuum of states           
  generated by a bath with a huge number of degrees of freedom)
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Summary

Lecture 2

The dynamics of an open quantum system is governed by a master equation 
of the form

d ρ̂S

dt
=ℒ [ ρ̂S( t) ]=

1
iℏ

[ Ĥ S ' ,ρ̂S( t) ]+ℒ ' [ρ̂S(t )]

Working within the framework of the density operator, assuming that the bath 
is weakly affected by its interaction with the system (while the system may be 
strongly affected), and using the hierarchy of time scales, we have derived a 
general form of the master equation,

ℒ [ ρ̂S(t) ] Ĥ S '

ℒ ' [ρ̂S(t )]

where              is the Liouvillian,       is the Hamiltonian of the system, possibly 
renormalized by its interaction with the bath, and                 induces a non-
unitary evolution.

d ρ̂S

dt
=

1
i ℏ

[ Ĥ S(t ),ρ̂S(t )]−
1
ℏ

2 ∫
  0

      ∞

d τ  TrB [ Ĥ I (t ) , [ Ĥ I(t−τ) ,ρ̂S(t )⊗ρ̂B(0) ] ]
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Summary

Lecture 2 (continued)

We have discussed two applications of the master equation, where a rather 
simple form can be derived :

Damped harmonic oscillator :

- The dynamics of the populations is a simple classical rate equation,               
   involving terms, which are easily interpreted as spontaneous emission, and   
   stimulated emission and absorption (at finite temperature)

- Emergence of a statistical equilibrium (Boltzmann distribution). If the bath   
  is at thermal equilibrium (Bose-Einstein distribution), the temperature of the 
  system equilibrates to that of the bath.

- Dynamical damping of oscillations

Atom in a laser field (driven system, governed by the optical Bloch equations)

- Dynamics of an atom at rest (damped Rabi oscillations, relaxation of             
   populations and coherences at a typical rate larger than Γ/2)

- Dynamics of a moving atom and manipulation of atoms by laser                    
   (radiation pressure and dipole force)
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Summary

Lecture 3

The evolution of a system S coupled to another system B (whatever they are) 
can always be written as

ρ̂(t)= ∑
0⩽k<K

Êk ρ̂(0) Êk
†

where the     are Kraus operators and fulfill the completion relation                   .∑
0⩽k< K

Êk
† Êk=1 Êk

This is the most general form of a quantum map                               , which 
preserves the density operator character of         (Hermitian, non-negative, of 
trace unity).

ρ̂(0)→ρ̂(t )=𝓚 [ρ̂(0)]
ρ̂( t)

The number K of Kraus operators may be set to

K⩽dim (𝓗B) for B initially in a pure state

K⩽dim (𝓗B)
2 for B initially in an arbitrary state

K⩽dim (𝓗S)
2 : most compact form (interpretation as the coupling to   

  a fictious bath)



7

Summary

Lecture 3 (continued)

A Kraus operator represents the probability amplitude that B jumps from a 
state to another :

A Kraus operator describes the evolution of S conditional to the measurement 
of the state of B :

ρ̂ 'S∣k=
Êk ρ̂(0) Êk

†

TrS ( Êk ρ̂(0) Êk
†
)

The evolution of S is the average of its evolution conditional to the result of 
the measurement of the state of B :

ρ̂S=∑
k

Pk×ρ̂ 'S∣k

A jump of the state of B is accompanied by a jump of the state of S.

Pk=TrS ( Êk ρ̂(0) Êk
†
)
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Summary

Lecture 4

The most general form of a master equation is the Lindblad form

d ρ̂S

dt
=

1
i ℏ

[ Ĥ S ' ,ρ̂S ]+ℒ ' [ρ̂S ]

ℒ ' (ρ̂S)= ∑
1⩽k<K

( L̂k ρ̂S L̂k
†
−

1
2

ρ̂S L̂k
† L̂k−

1
2

L̂k
† L̂k ρ̂S)with

They are found by writting

Êk=0≃1−(
1
2

∑
1⩽k<K

L̂k
† L̂k−

1
i ℏ

Ĥ )Δ t

Êk>0≃ L̂k √Δ t

This representation permits a stroboscopic evolution of the density operator 
of S (Markov hypothesis, stochastic wavefunctions) : Isolated evolution 
interrupted by jumps induced by measurements of the sate of B) 
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Summary

Lecture 4 (continued)

Reintroducing the states of the B, the stochastic wave function approach 
allows to efficiently describe decoherence.

For a harmonic oscillator, the Fock states are subjected to decoherence. In 
contrast, the coherent states evolve as pure coherent states (although with a 
damping of the parameter α).

A state that is protected against decoherence (ie a state that evolves as a pure 
state, non entangled with the state of the bath) is called a pointer state. They 
play a central role in the theory of quantum measurement.

To go beyond these lectures, strategies to fight against decoherence :

- Design of the bath (quantum cavity electrodynamics, trapped ions)

- Design the coupling (quantum Zeno effect)

- Reconstruct coherence by measuring the environment (quantum eraser       
   and feedback)
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