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Open Quantum Systems

Here,  open = non-isolated 
(ie « open » or « closed » in 
the thermodynamic sense)

bath / reservoir / 
environment (B)

system (S)

Open systems are ubiquitous
    Uncontrolled : atom in vacuum, electrons in a solid, nanomechanical systems, …

    Controlled : manipulation, engineering, measurements

    Formal : A small part of a larger system

Many physical consequences
    Spontaneous emission of individual atoms

    Emergence of statistical physics

    Decoherence, classical/quantum frontier

    Theory of quantum measurement

    Relaxation (NMR, 1950’s ; Optical pumping, 1960’s ...)

    Control of individual quantum systems
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Open Quantum Systems

ultracold atoms

superconducting 
circuits

artificial ion crystals

cavity polaritons

cavity QED

nanomechanical 
devices
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Open Quantum Systems

bath / reservoir / 
environment (B)

system (S)
How to describe the 
dynamics of an open 
quantum system ?
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Open Quantum Systems

system (S)

Wavefunction approach

iℏ
d∣ΨS 

dt
=Ĥ S(t )∣ΨS 

Superpositions, unitarity, 
reversibility
∣ΨS(t )=Û S(t )∣ΨS(0) 

∣ΨS(0) =Û S
†
(t)∣ΨS(t) 

Schrödinger equation

How to describe the 
dynamics of an open 
quantum system ?
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Open Quantum Systems

bath / reservoir / 
environment (B)

system (S)

Wavefunction approach

iℏ
d∣ΨS⊗B 

dt
=Ĥ S⊗B(t )∣ΨS⊗B 

Superpositions, unitarity, 
reversibility
∣ΨS⊗B(t )=Û S⊗B(t)∣ΨS⊗B(0) 

∣ΨS⊗B(0) =Û S⊗B
†

(t )∣ΨS⊗B(t) 

Schrödinger equation

composite 
system (S⊗B)

⇒ Keeps all about S⊗B, but     
    information on S is hidden

How to describe the 
dynamics of an open 
quantum system ?
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Open Quantum Systems

bath / reservoir / 
environment (B)

system (S)

Wavefunction approach

iℏ
d∣ΨS⊗B 

dt
=Ĥ S⊗B(t )∣ΨS⊗B 

Superpositions, unitarity, 
reversibility
∣ΨS⊗B(t )=Û S⊗B(t)∣ΨS⊗B(0) 

∣ΨS⊗B(0) =Û S⊗B
†

(t )∣ΨS⊗B(t) 

Schrödinger equation

Description by the density operator

d ρ̂S

dt
=ℒ [ ρ̂S(t) ]=

1
iℏ

[ Ĥ S , ρ̂S(t ) ]+ℒ ' [ ρ̂S(t) ]

Non-unitary map, irreversibility/relaxation, 
loss of coherence

ρ̂S(t )=K t [ ρ̂S(0)]

Master equation

⇒ Keeps all about S⊗B, but     
    information on S is hidden

⇒ Relevant formalism for an open system  
     (information on B is traced out)

How to describe the 
dynamics of an open 
quantum system ?
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Scope of these Lectures

bath / reservoir / 
environment (B)

system (S)

How to derive a master equation ?

Not easy : How to deal with the information leak towards B, memory effects ?  Not 
so clear that B can be traced out …

Work within the scope of the density operator

What is the physical content of the master equation (emergence of statistical 
physics, manipulation, control …) ?

How to relate the trajectory of an individual quantum system to the dynamics of 
the density operator ?
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Probable Programme

1. Introduction to open quantum systems

1.1 Position of the problem

1.2 Simple approaches

1.3 The density operator (reminder ... or not)

2. Master equation : The statistical physics approach

2.1 Formal derivation of the master equation

2.2 Statistical equilibrium : The damped harmonic oscillator

2.3 Driven systems : The Optical Bloch equations

3. The quantum information approach

3.1 Krauss operators

3.2 Lindblad form of the master equation

3.2 Quantum jumps and stochastic wavefunctions

4. Decoherence, entanglement, and control
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Description of a Non-Isolated System

In general, a non-isolated system S cannot be described by a ket

Example : An atom coupled to the vacuum (spontaneous emission)

∣e 

∣g 

∣Ψ(0)=∣e , p⃗=0 A⊗∣0 R

∣Ψ(t) =α0(t)∣e , p⃗=0 A⊗∣0 R+∑
ℓ

βℓ(t)∣g , p⃗=−ℏ k⃗ ℓ A⊗∣1 ℓ

∣e 

∣g 

e.s.
+ℏ k⃗ ℓ

p⃗=−ℏ k⃗ℓ

atom-radiation field coupling

« measurement » (absorption of a photon)

∣Ψ ' =∣g , p⃗=−ℏ k⃗ℓ A⊗∣1 ℓ with probability Πℓ∝|βℓ|
2

  ⇒ The system is « prepared » in a non-well defined state

∣ψ ' A=∣g , p⃗=−ℏ k⃗ ℓA with probability Πℓ∝|βℓ|
2

∣ΨS 
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Id=∑α
∣α  〈α∣

1
2

The Statistical Physics Picture

Ô ⟨O ⟩=∑n
Πn 〈 Ψ n∣Ô∣Ψn 

Assume that the system S is prepared in the ket          with probability      .

{Πn ,∣Ψ n }

To merge all the information about the « state » of S in a single quantity, write

⟨O ⟩=∑n
Πn 〈 Ψ n∣Ô∣Ψn =∑n∑α

Πn 〈 Ψn∣Ô∣α  〈α∣Ψn =∑α
∑n

〈α∣Ψn Πn 〈 Ψ n∣Ô∣α 

=∑α
〈 α∣(∑n

Πn∣Ψn 〈 Ψ n∣Ô)∣α 

The state of a non-isolated system is fully determined by the density operator

ρ̂=∑n
Πn∣Ψ n  〈 Ψn∣

Ô 〈O ⟩=Tr (ρ̂Ô )The average value of an observable      then reads as                    .

∣Ψn  Πn

∣Ψn N.B. : We have not assumed that the        ’s are orthogonal.

Density operator

⇒ The « state » of the system is thus defined by the ensemble                .

The average value of an observable     reads as                                    .
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(i)     is a positive Hermitian operator (in general non definite)ρ̂

Immediate properties :

(iii)     can be diagonalized in an orthonormal basis          :ρ̂ {∣α ⟩}

ρ̂=∑α
Πα∣α  〈α∣

⇒ The eigenvalues of    ,                 ,  may be interpreted as the probabilities   
     that the system is in       .

0⩽Πα⩽1
∣α 

Consequence : Any positive Hermitian operator, with a unit trace can be                
                        as the density operator of a given system in a certain state.

Tr (ρ̂ )=1(ii) Normalization :

ρ̂

The Statistical Physics Picture

Density operator ρ̂=∑n
Πn∣Ψ n  〈 Ψn∣
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The Statistical Physics Picture

When can a system be described by a ket ?

(*) For an isolated system described by       , we have                     (projector on       ).  
      Hence,           and 

∣Ψ  ρ̂=∣Ψ  〈 Ψ∣

ρ̂=ρ̂
2

Tr (ρ̂2 )=1

(*) In general, we may write                              with           an orthonormal basis,      
      and we have

ρ̂=∑
α
Πα∣α  〈α∣

Tr (ρ̂2 )=∑α
Πα

2
⩽∑α

Πα=1

Tr (ρ̂2 )⩽1
Π0=1 Πα>0=0

ρ̂

     A system can be described by a ket, i.e. 

iff its density operator     has a single non-zero eigenvalue

iff                (purity)

We then call it a pure state. Otherwise, it is called a mixed state.

ρ̂=∣Ψ  〈 Ψ∣

Tr (ρ̂2 )=1

ρ̂ 

Hence,                 , with equality iff     has a single non-zero eigenvalue 
(e.g.              and               ).

∣Ψ 

{∣α }
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The Statistical Physics Picture

Assume that S is prepared in a mixed state, then isolated, and let is evolve.

∣Ψn 

Πn

iℏ
d ρ̂

dt
=i ℏ

d
dt (∑n

Πn∣Ψn 〈 Ψ n∣)=∑n
Πn(i ℏ

d∣Ψn 

dt
〈 Ψ n∣+iℏ∣Ψ n 

d 〈 Ψn∣

dt )
The dynamical equation follows :

=∑n
Πn (Ĥ (t)∣Ψ n  〈 Ψn∣−∣Ψ n  〈 Ψ n∣Ĥ (t ))=Ĥ (t )ρ̂−ρ̂ Ĥ (t)

The dynamical equation for a system isolated during the evolution reads as
d ρ̂
dt

=
1
iℏ

[ Ĥ (t ) ,ρ̂ ]

The probabilities       are conserved ;

Only the          ’s evolve (Schrödinger)

tt=0

System S coupled 
 to a bath B

preparation of a 
mixed state

System S isolated, governed 
by the Hamiltonian   ̂H (t )

Quantum Liouville equation

It is the quantum Liouville equation. Its solution reads as                                    .ρ̂(t)=U (t )ρ̂(0)U †
(t )
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The Entanglement Picture

Let us now take into account the coupling of S with the bath B. The system 
SB is isolated.

B
S∣Ψ S⊗B= ∑

1⩽n⩽dim(𝓗 B)

cn∣ψn S⊗∣χn B

The most general pure state of SR reads as

orthonormal 
basis of        .𝓗B

∑
n

|cn|
2
=1

∣Ψ S⊗B

(normalization
 of              )

Normalized states of        , 
possibly nonorthogonal

𝓗S

In general, the pure state              is an entangled state of the subsystems S and B.∣Ψ S⊗B
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Description of a Non-Isolated System

In general, a non-isolated system S cannot be described by a ket

Example : An atom coupled to the vacuum (spontaneous emission)

∣e 

∣g 

∣Ψ(0)=∣e , p⃗=0 A⊗∣0 R

∣Ψ(t) =α0(t)∣e , p⃗=0 A⊗∣0 R+∑
ℓ

βℓ(t)∣g , p⃗=−ℏ k⃗ ℓ A⊗∣1 ℓ

∣e 

∣g 

e.s.
+ℏ k⃗ ℓ

p⃗=−ℏ k⃗ℓ

atom-radiation field coupling

« measurement » (absorption of a photon)

∣Ψ ' =∣g , p⃗=−ℏ k⃗ℓ A⊗∣1 ℓ with probability Πℓ∝|βℓ|
2

  ⇒ The system is « prepared » in a non-well defined state

∣ψ ' A=∣g , p⃗=−ℏ k⃗ ℓA with probability Πℓ∝|βℓ|
2

∣ΨS 
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The Entanglement Picture

  ⇒ Can we describe the state of S , which is entangled which that of B with a    
       density operator ?

Consider SB as composed of the two subsystems S and B.

Example : An atom coupled to the vacuum (spontaneous emission)

∣Ψ(0)=∣e , p⃗=0 A⊗∣0 R

∣Ψ(t) =α0(t)∣e , p⃗=0 A⊗∣0 R+∑
ℓ

βℓ(t)∣g , p⃗=−ℏ k⃗ ℓ A⊗∣1 ℓ

atom-radiation field coupling

« measurement » (absorption of a photon)

∣Ψ ' =∣g , p⃗=−ℏ k⃗ℓ A⊗∣1 ℓ with probability Πℓ∝|βℓ|
2

∣ψ ' A=∣g , p⃗=−ℏ k⃗ ℓA Πℓ∝|βℓ|
2with probability

∣e 

∣g 

∣e 

∣g 

e.s.
+ℏ k⃗ ℓ

p⃗=−ℏ k⃗ℓ
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The Entanglement Picture

As before, we need be able to determine the results of any measurement on S 
alone (independently of B).

∣Ψ S⊗B= ∑
1⩽n⩽dim (𝓗 B)

cn∣ψn S⊗∣χn B

Let      be observable on S alone. For the state

⟨OS⟩=S⊗B 〈 Ψ∣(ÔS⊗1̂B )∣Ψ S⊗B

Πn≡|cn|
2

→ We find the same formula as when S is in    
     the ket          avec probabilité              !∣ψn 

The state of the subsystem S is described by 
the density operator                               .ρ̂S=∑n

|cn|
2
∣ψn  〈 ψn∣

ÔS

〈OS ⟩=Tr (ρ̂SÔS )
The average of an observable       on S alone 
reads as                        .

N. B. : The quantity       fulfills all    
            the properties of a density     
            operator (Hermitian,              
            positive, unit trace)

ρ̂S

ÔS

we have

⟨OS⟩=∑
n

|cn|
2
S 〈 ψn∣ÔS∣ψn S

B
S



10

The Entanglement Picture

This result also applies to the case where SB is itself in a mixed state, 
described by the density operator         .

For an observable      acting on S alone, one can 
split the traces acting on different Hilbert spaces. 
One then finds

ÔS

⟨OS⟩=TrS⊗B(ρ̂S⊗B ÔS)=TrS (ρ̂SÔS)

The state of the subsystem S of the system SB in the mixed state described by 
the density operator          is fully described by the reduced density operator

〈OS ⟩=TrS (ρ̂SÔS)The average of an observable       on S alone reads as                        .

N. B. : It is easily shown that      fulfills all the properties of 
            a density operator (Hermitian, positive, unit trace).

ρ̂S

ρ̂S⊗B

ρ̂S=TrB (ρ̂S⊗B )

ρ̂S=TrR (ρ̂S⊗B )

ρ̂S⊗B

ÔS

(partial trace)

où B
S
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The Entanglement Picture

Quantum Liouville equation

Assume that the system SB is prepared in an arbitrary mixed state, that S 
and B are then decoupled at t=0, and let the system evolve.

The dynamical equation for SB reads as

tt=0

System SB prepared 
in

Independent evolutions of S and B : 
 Ĥ S⊗B=ĤS+ĤBρ̂S⊗B

iℏ
d ρ̂S⊗B

dt
=[ Ĥ S+ĤB , ρ̂S⊗B ]

TrB

iℏ
d ρ̂S

dt
=[ Ĥ S ,ρ̂S ]

TrS

iℏ
d ρ̂B

dt
=[ ĤB , ρ̂R ]

The dynamical equation of a subsystem isolated during the evolution reads as
d ρ̂S

dt
=

1
i ℏ

[ Ĥ S(t ) ,ρ̂S ]

It is the quantum Liouville equation. Its solution reads as                                   .ρ̂S(t )=U S(t )ρ̂S(0)U S
†
(t )
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Generalized von Neumann Measurement Scheme

Quantum measurement postulate

Ô=∑ j
O j�̂� j

eigenvalues projectors onto the 
eigenspaces (               )

O1

O2 ∣Ψ 

�̂�1∣Ψ 

�̂�2∣Ψ 

     is found with probabilityO j P j=Tr (ρ̂S�̂� j )

Assume S is in the mixed state     .

After the measurement, the state of S becomes

Ô

Measure the observable

ρ̂S

If the result of the measurement is read and yields O j

ρ̂S '=ρ̂S∣j=
�̂� j ρ̂S�̂� j

Tr (�̂� j ρ̂S�̂� j)
=
�̂� j ρ̂S�̂� j

P j

�̂� j
2
=�̂� j

→ Any further measurement yields the same result,     .O j

If the result of the measurement is not read, ρ̂S '=∑ j
P j ρ̂S∣j=∑ j

�̂� j ρ̂S�̂� j

→ Destruction of the coherences between the states corresponding to different         
     values of        (included in the measurement postulate)O j
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