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Open Quantum Systems

Here, open = non-isolated S im s
(ie « open » or « closed » in Gystem (S) r—
the thermodynamic sense) T e——

bath / reservoir /
environment (B)

Open systems are ubiquitous
Uncontrolled : atom in vacuum, electrons in a solid, nanomechanical systems, ...
Controlled : manipulation, engineering, measurements

Formal : A small part of a larger system

Many physical consequences
Spontaneous emission of individual atoms
Emergence of statistical physics
Decoherence, classical/quantum frontier
Theory of quantum measurement
Relaxation (NMR, 1950’s ; Optical pumping, 1960°s ...)
Control of individual quantum systems



Open Quantum Systems

cavity QED

ultracold atoms

nanomechanical
devices

Jocephoon tunne] jund tion

superconducting
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Open Quantum Systems

How to describe the
dynamics of an open
quantum system ?

bath / reservoir /

m (S) »—— environment (B)




Open Quantum Systems

How to describe the
dynamics of an open
quantum system ?

Wavefunction approach

Schrodinger equation
d|Ws)

i 7
T

:ﬁs(t)|lps>

Superpositions, unitarity,
reversibility

[Ws(t))=Us(e)|Ws(0))

[Ws(0)=U()|Ws(e))



Open Quantum Systems

How to describe the
dynamics of an open
quantum system ?

Wavefunction approach

Schrodinger equation

dW...) -
di®B :HS®B(t)|qJS®B>

ih

Superpositions, unitarity,
reversibility

(Won(t)=Usen(t)|Wsen(0))

[Wien(0))=Ugen (t)|Wson(t))

= Keeps all about S®B, but
information on S is hidden

composite
~ system (S®B)

'stem (S); —

bath / reservoir /
environment (B)



Open Quantum Systems

How to describe the
dynamics of an open
quantum system ?

Wavefunction approach

Schrodinger equation

L d|[Wegn) o
lh%:H5®B<t)|‘PS®B>

Superpositions, unitarity,
reversibility

(Won(t)=Usen(t)|Wsen(0))

|IPS®B(O)>:ﬁ;®B(t)|‘PS®B(t)>

= Keeps all about S®B, but
information on S is hidden

Description by the density operator

Master equation

Non-unitary map, irreversibility/relaxation,
loss of coherence
@s(t):Kt[ﬁs(O)]

' ¢¢

~

. .
- -

= Relevant formalism for an open system
(information on B is traced out)



Scope of these Lectures

Work within the scope of the density operator

How to derive a master equation ?

Not easy : How to deal with the information leak towards B, memory effects ? Not
so clear that B can be traced out ...

What is the physical content of the master equation (emergence of statistical
physics, manipulation, control ...) ?

How to relate the trajectory of an individual quantum system to the dynamics of
the density operator ?



Probable Programme

1. Introduction to open quantum systems
1.1 Position of the problem
1.2 Simple approaches

1.3 The density operator (reminder ... or not)

2. Master equation : The statistical physics approach
2.1 Formal derivation of the master equation
2.2 Statistical equilibrium : The damped harmonic oscillator

2.3 Driven systems : The Optical Bloch equations

3. The quantum information approach
3.1 Krauss operators
3.2 Lindblad form of the master equation

3.2 Quantum jumps and stochastic wavefunctions

4. Decoherence, entanglement, and control



Some References

L. Sanchez-Palencia and P. Zoller, Lecture notes of the 2019 Les Houches
summer school (on arXiv in 202X, with X~0)

C. Gardiner and P. Zoller, Quantum noise (Springer-Verlag, Berlin, 2004)

Le Bellac, Quantum physics (Cambridge Univ Press, UK, 2012)

C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-photon
interactions: Basic processes and applications, (Wiley & sons, 1998)

S. Haroche, lectures at College de France (2003-04) ; available on line at
https://www.college-de-france.fr/site/serge-haroche/ course.htm
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Description of a Non-Isolated System

In general, a non-isolated system S cannot be described by a ket |w)

Example : An atom coupled to the vacuum (spontaneous emission)

¥
|W(O>>:|E:P:O>A®|O>R >

+hk,
atom-radiation field coupling -zie.&
v g

|W(t>>=ao(t)le,ﬁ:0>A®IO>R+;Bf(t)lg,ﬁ:—hl?f>A®ll>f }/ <lg)
p=—hk,  =%rle)

« measurement » (absorption of a photon) —|g)

Y
W =|g,p=—1ik,),®|1), with probability  IT,oc|p,|
- [y}, =lg, p=—Ake), with probability Tl

= The system 1s « prepared » in a non-well defined state



The Statistical Physics Picture

Density operator

Assume that the system S is prepared in the ket |W_) with probability IT .

The average value of an observable O reads as <O>:Zn (¥ |0O|W ).

= The « state » of the system is thus defined by the ensemble {11 ,|¥ )}.

To merge all the information about the « state » of S in a single quantity, write

(0)=2 TI(W,|0|¥,)=2 > T(W,|0la)(al®,)=D, D (a|¥ )IL(¥,[O|a)

= o v YW |0l
1d=) |a)(al Za< |(Zn A W)W )| )

" The state of a non-isolated system 1is fully determined by the density operator )
p=2., W, (W]

The average value of an observable O then reads as (O)=Tr 00|

S

N.B. : We have not assumed that the | W _)’s are orthogonal.



The Statistical Physics Picture
Density operator p=), IL|W,)(¥,|

Immediate properties :

(i) p is a positive Hermitian operator (in general non definite)

(ii) Normalization : | Tr(p|=1

(iii) p can be diagonalized in an orthonormal basis {|a)] :

p=2. Mila)(al

= The eigenvalues of p, 0<II, <1, may be interpreted as the probabilities
that the system is in |a).

Consequence : Any positive Hermitian operator, with a unit trace can be
as the density operator of a given system in a certain state.




The Statistical Physics Picture

When can a system be described by a ket ?

(*) For an isolated system described by |W ), we have p=|W )(W¥| (projector on |¥)).
Hence, p=p~ and
Tr(p=1

(*) In general, we may write f)zza I1,|0){a| with {|a)] an orthonormal basis,
and we have

Trlp’j=), <y 1,=1

Hence, Tr (f)2) <1, with equality iff p has a single non-zero eigenvalue
(e.g. II,=1 and II__,=0).

A system can be described by a ket, i.e. p=|¥) (W]
iff 1ts density operator p has a single non-zero eigenvalue

iff Tr(p?=1 (purity)

We then call it a pure state. Otherwise, it 1s called a mixed state./




The Statistical Physics Picture

Quantum Liouville equation

Assume that S 1s prepared in a mixed state, then 1solated, and let 1s evolve.

System S coupled System S isolated, governed
to a bath B by the Hamiltonian H (t)
i >
preparation of a =0 The probabilities IT are conserved ; !
mixed state Only the |W_)’s evolve (Schrodinger)

The dynamical equation follows :
d(¥,|

lhcilp—lh (Z v Ny |) Zan(ihd|;I;”><1Pn|+i
_Z I,

()W) (W, |W, ) (W, |H(t)=H(¢)p—pH|¢)

" The dynamical equation for a system i1solated during the evolution reads as
dp _ 1 1p
—=—Hlt),
=i AP

| Tt is the quantum Liouville equation. Its solution reads as p(t)=U(t)p(0)U"(¢) .

~

J




The Entanglement Picture

Let us now take into account the coupling of S with the bath B. The system
S®B is 1solated.

The most general pure state of S®R reads as

|lP>S®B: Z Cn|1pn>8®|Xn>B

1<n<dim(# ) Y B
’/
2 . . ‘
Zn: e =1 ((r)l?rﬁlp a>hzat;0n orthonormal
SOB basis of &' .

y
Normalized states of &,
possibly nonorthogonal

In general, the pure state |W). . is an entangled state of the subsystems S and B.

S®B



Description of a Non-Isolated System

In general, a non-isolated system S cannot be described by a ket |w)

Example : An atom coupled to the vacuum (spontaneous emission)

¥
|W(O>>:|E:P:O>A®|O>R >

+hk,
atom-radiation field coupling -zie.&
v g

|W(t>>=ao(t)le,ﬁ:0>A®IO>R+;Bf(t)lg,ﬁ:—hl?f>A®ll>f }/ <lg)
p=—hk,  =%rle)

« measurement » (absorption of a photon) —|g)

Y
W =|g,p=—1ik,),®|1), with probability  IT,oc|p,|
- [y}, =lg, p=—Ake), with probability Tl

= The system 1s « prepared » in a non-well defined state



The Entanglement Picture

Consider S®B as composed of the two subsystems S and B.

Example : An atom coupled to the vacuum (spontaneous emission)

|W(O>>:|E,E:O>A®|O>R

+hk,
atom-radiation field coupling -zie.&
v ¢

= Can we describe the state of .S, which 1s entangled which that of B with a
density operator ?



The Entanglement Picture

As before, we need be able to determine the results of any measurement on S
alone (independently of B).

Let O, be observable on S alone. For the state

|IP>S®B: Z Cn|lpn>8®|Xn>B

1<n<dim(# ,)

we have <OS>:S®B<‘P|(65®13)|‘P>S®B
:Z |Cn|28<wn|68|wn>s

— We find the same formula as when S is in
the ket |y,) avec probabilité I1,=|c, [*!

" The state of the subsystem S is described by h

' A N. B. : The quantity Ps fulfills all
the density operator ps=2. |c,|w,)(w,l: quantity Ps fulfills a

the properties of a density
operator (Hermitian,

The average of an observable O, on S alone positive, unit trace)

reads as ( O.)=Tr|pO|.
L (Os) (ps s) )




The Entanglement Picture

This result also applies to the case where S®B i1s itself 1n a mixed state,
described by the density operator Pgep .

For an observable @S acting on S alone, one can
split the traces acting on different Hilbert spaces.
One then finds

<OS>:TrS@B(ﬁS@BéS>:TrS(ﬁSéS) < S

ou ﬁs:TrB(f)SQaB)

N. B. : It is easily shown that Qg fulfills all the properties of
a density operator (Hermitian, positive, unit trace).

p
The state of the subsystem S of the system S®B in the mixed state described by
the density operator Psqp is fully described by the reduced density operator

f)s =Tr, (f)s oB ) (partial trace)

The average of an observable (35 on S alone reads as <OS>:TrS(f)SéS).

~
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The Entanglement Picture

Quantum Liouville equation

Assume that the system S®B i1s prepared 1n an arbitrary mixed state, that S
and B are then decoupled at =0, and let the system evolve.

System S®B prepared Independent evolutions of S and B :
N Pgep Hsz=H+Hy

=0 4

The dynamical equation for S®B reads as

i 7 d%’t@B :{ﬁs+ﬁ3,ﬁs®B]
TrB’ e \‘TI‘S
in 221, in P (1,5,
" The dynamical equation of a subsystem isolated during the evolution reads as
%:é[ﬁs(t%ﬁs]

_ It is the quantum Liouville equation. Its solution reads as f(t)=Us(t)p(0)UL(t).

J
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Generalized von Neumann Measurement Scheme

Quantum measurement postulate 0, W)

Assume S is in the mixed state Q. P|Y) l O
> P|W)

Measure the observable O=) O j@ ; 3
A | 0,

AN
\

eigenvalues  projectors onto the
eigenspaces ( g’iz P)

If the result of the measurement is read and yields O,

O, is found with probability P;=Tr[p;% L

o ,@jpsg’j P

After the measurement, the state of S becomes pg'=pg;= T —
(2,0, P

— Any further measurement yields the same result, O..

If the result of the measurement is not read, ps'=2. P;p; =2 PP,

— Destruction of the coherences between the states corresponding to different
values of O, (included in the measurement postulate)

12
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