

Quantum Dynamics with the Multi-Configuration Time-Dependent Hartree (MCTDH) or the PODVR methods

Fabien Gatti.

Quantum Dynamics with the Multi-Configuration Time-Dependent Hartree (MCTDH) method or the PODVR methods ISMO, University Paris-Saclay, Orsay, France

November, 2019

Molecular Quantum Dynamics, Springer, 2014, Ed. F. Gatti

Quantum Physics: applications in chemistry, Lectures Notes in Chemistry, F. Gatti, B. Lasorne, H.-D. Meyer and A. Nauts, Springer, 2017.

Full quantum mechanical time-dependent treatment

 $(\mathsf{H}_2\mathsf{O})_3\mathsf{H}_3\mathsf{O}^+$

Zundel and Eigen cations: the two "idealized" forms of an excess proton in liquid water. Essential to describe the diffusion of protons in water (Grotthuss mechanism).

$H{+}CH_4 \rightarrow H_2 + CH_3$ Very accurate measurements of the cross sections of molecular

collisions (experimental group of Dalian)

Understanding of bi-molecular elementary reactions including all the most subtle quantum effects

Possible treatment of the quantum dynamics of systems with hundreds of atoms with the ML-MCTDH approach

One example on biological system

The Heidelberg Multi-Configuration Time-Dependent Hartree (MCTDH) package http://www.pci.uni-heidelberg.de/cms/mctdh.html

H.-D. Meyer, U. Manthe, and L.S. Cederbaum, Chem. Phys. Lett. 165 (1990), 73.

Multidimensional Quantum Dynamics : MCTDH Theory and Applications Wiley-VCH Edited by H.-D. Meyer, F. Gatti and G. Worth. Quantum dynamics

The MultiConfiguration Time Dependent Hartree (MCTDH) algorithm is a computational method to propagate wave packets. The MCTDH wavefunction *ansatz* writes

$$\Psi(q_1,\ldots,q_f,t) \equiv \Psi(Q_1,\ldots,Q_p,t),$$

= $\sum_{m_1}^{n_1}\cdots\sum_{m_p}^{n_p}A_{m_1,\ldots,m_p}(t)\prod_{\kappa=1}^{p}\varphi_{m_\kappa}^{(\kappa)}(Q_\kappa,t),$
= $\sum_M A_M\Phi_M,$ (1)

$$\varphi_{j_{\kappa}}^{(\kappa)}(Q_{\kappa},t) = \sum_{l_{1}=1}^{N_{1,\kappa}} \cdots \sum_{l_{d}=1}^{N_{d,\kappa}} c_{j_{\kappa}l_{1}\cdots l_{d}}^{(\kappa)}(t) \,\chi_{l_{1}}^{(\kappa)}(q_{1,\kappa})\cdots \chi_{l_{d}}^{(\kappa)}(q_{d,\kappa}) \tag{2}$$

$$i\dot{A}_{M} = \sum_{L} \langle \Phi_{M} | H | \Phi_{L} \rangle A_{L}, \qquad (3)$$

$$i\dot{\varphi}^{(\kappa)} = \left(1 - P^{(\kappa)}\right) \left(\rho^{(\kappa)}\right)^{-1} \langle H \rangle^{(\kappa)} \varphi^{(\kappa)}.$$
(4)

Sum of products of one-particle operators

$$V(\boldsymbol{q}_{i_{1}}^{(1)},\ldots,\boldsymbol{q}_{i_{p}}^{(p)}) = \sum_{j_{1}=1}^{m_{1}}\cdots\sum_{j_{p}=1}^{m_{p}}C_{j_{1}\ldots j_{p}}v_{j_{1}}^{(1)}(\boldsymbol{q}_{i_{1}}^{(1)})\cdots v_{j_{p}}^{(p)}(\boldsymbol{q}_{i_{p}}^{(p)})$$
(5)

The potential is in MCTDH form only when dealing with model problems MCTDH form (potfit, Multigrid-potfit, Multilayer-potfit)

The MCTDH computation time grows linearly with the number of Hamiltonian terms

Polyspherical coordinates F. Gatti and C. lung Phys. Rep. (2009).

N-atoms, N-1 relative position vectors.

Definition of the Body-Fixed frame.

Definition of the polyspherical coordinates.

The polyspherical approach

$$2\hat{T} = \sum_{i,j=1,...,N-1} \sum_{\lambda=x,y,z} \hat{P}^{\dagger}_{i\,\lambda^{BF}} M_{ij} \hat{P}_{j\,\lambda^{BF}}$$
$$\hat{\vec{P}}_{i} = \hat{P}_{R_{i}} \vec{e}_{i} - \frac{\vec{e}_{i} \times \hat{\vec{L}}_{i}}{R_{i}}$$
(6)

 M_{ij} is diagonal for "orthogonal" coordinates (Jacobi, Radau)

The polyspherical approach

General expression of the KEO.

$$\begin{split} \hat{T} &= \sum_{l,m=1}^{3N-6} \frac{\hat{P}_{q_l}^{\dagger} \Sigma_{q_l q_m} \hat{P}_{q_m}}{2} + \sum_{l=1}^{3N-6} \sum_{\alpha = x,y,z} \frac{\hat{P}_{q_l}^{\dagger} \sigma_{q_l \alpha} \hat{J}_{\alpha^{BF}} + \hat{J}_{\alpha^{BF}} \sigma_{\alpha q_l} \hat{P}_{q_l}}{2} \\ &+ \sum_{\alpha = x,y,z} \sum_{\beta = x,y,z} \frac{\hat{J}_{\alpha^{BF}} \Gamma_{\alpha \beta} \hat{J}_{\beta^{BF}} + \hat{J}_{\beta^{BF}} \Gamma_{\beta \alpha} \hat{J}_{\alpha^{BF}}}{2} \,. \end{split}$$

$$\hat{P}_{q_i} = \frac{1}{i} \frac{\partial}{\partial q_i}$$

$$M_{ij}(\hat{P}_{\varphi_i}\frac{\cos\varphi_i\cos\varphi_j}{R_iR_j\sin\theta_i\sin\theta_j}\hat{P}_{\varphi_j}+\hat{P}_{\varphi_j}\frac{\cos\varphi_i\cos\varphi_j}{R_iR_j\sin\theta_i\sin\theta_j}\hat{P}_{\varphi_i})$$

(7)

(8)

Singularities.

$$\frac{1}{2mR^2\sin^2\theta}\frac{\partial^2}{\partial\varphi^2}\tag{9}$$

An appropriate basis set that removes the singularities: a basis set of spherical harmonics: 2 dimensional DVR.

For the angular momentum of a body: Wigner 3D DVR

Several advantages:

always a sum of products of one-dimensional operators

flexibility

one knows the solution if singularities appear

Disadvantages:

restrictions in the definition of the coordinates in particular for the BF frame

can create some artificial correlation and break the symmetry

TANA Package

M. Dong, L. Joubert Doriol, H.-D. Meyer, A. Nauts F. Gatti , D. Lauvergnat JCP 139 (2013) 204107

Strong coupling (Fermi resonance) between the proton-transfer motion and the wagging (or pyramidalization) bending mode of vibration. Description in terms of curvilinear (involving angles) coordinates.

O. Vendrell, F. Gatti, and H.-D. Meyer, Angewandte Chemie Int. Ed (VIP) 46 (2007) 6918. "Dynamics and Infrared Spectroscopy of the Protonated Water Dimer."
 S. S. Xantheas, Nature 457 (2009) 673.

MCTDH operator file provided by the TANA program

D. Lauvergnat (Orsay)

4370 terms

F. Gatti (Orsay)

Collaboration with Dong-Hui Zhang (Dalian)

Goal : Accurate calculations of the cross-sections of $\mathsf{H}{+}\mathsf{CH}_4$

PODVR approach for the degrees of freedom

Not too many terms: necessity to be 100 % sure that the operator is perfectly implemented in the code of Dalian

 $S_1 \equiv S_{BF}$

Other coordinates: Evenhuis C, Nyman G, Manthe U (2007) Journal of Chemical Physics 127(14): 144302/ Schapers D, Zhao B, Manthe U Chem. Phys. 509 (2009) 37. Application to $H + CHD_3$

 $C3\nu$ symmetry and several coordinate transformations to avoid any singularity

(Ecknart frame, contraction for the bend and stretch motions, i							
Basis set		R_1, R_2, R_3	θ_1, θ_2	φ	β_s	γ_s	R
	PODVR	7	7	7	7	7	7
State	Exp.	SSD	P		NEK	СВ	
(5,1)F ₁	157.124	157.094 \pm	0.002	1	57.08	8	
(5,1)F ₂	157.128	157.102 \pm	0.005	1	57.09	2	
(5,1)E	157.137	157.115 \pm	0.008	1	57.10	1	
$(5,2)F_2$	157.139	157.137 \pm	0.014	1	57.10	3	

Comparison with Xiao-Gang Wang and T. Carrington

(Echbort frame contraction for the bend and stretch motions, use of symmetry).

Z. Zhao at al. JCP 148 (2018) 074113

Vib	(K)Sym	Exp.	SSDP	NEKCB
(002000)A ₁	(1)E	2606.65	2608.18 ± 0.01	2606.08
(000011)E	(1)E	2629.05	2629.70 ± 0.01	2628.86
(000011)E	(0)E	2631.27	2631.91 ± 0.67	2631.06
(000011)A ₁	(1)E	2634.30	2634.65 ± 0.01	2634.11
(000011)E	$(1)A_{2}$	2636.12	2637.74	2635.90
(000011)E	$(1)A_1$	2636.12	2637.75	2635.90
$(000011)A_1$	$(0)A_2$	2640.99	2642.75	2640.81
(000011)A ₂	$(0)A_{1}$	2642.69	2643.34	2642.49
(000011)A ₂	(1)E	2652.04	2653.09 ± 0.03	2651.85
(001010)E	(1)E	2782.51	2782.69 ± 0.00	2782.27
(001010)E	(0)E	2783.97	2784.19 ± 0.58	2783.73
(001010)E	$(1)A_1$	2788.17	2788.41	2787.94
(001010)E	$(1)A_{2}$	2788.26	2788.50	2788.02

12 D results to be published

Reaction probabilities for $H{+}CH_4 \rightarrow H_2$ + CH_3

Zhaojun Zhang and Dong-Hui Zhang (Dalian)

)

Spin-Boson Models CDFT QM/MM calculations 110 000 atom including 34 000 water molecules, 298.15 K Parameters provided by QM/MM calculations (Aurélien de la Lande and M. Desouter Lecomte)

Absorption of light by the chromophore Flavin Adenine Dinucleotide (FAD) triggers an electron transfer to tryptophan residue

$FAD^{*} + W_{400} \rightarrow FAD^{*}$	$(FAD^{*-} + W_{400}^{*+})$	
	Time constant $ au$ (ps)	
Electron transfer	Experiment [1]	
${\rm W}_{400} \rightarrow {\rm FAD}$	0.4	
$\mathrm{W_{377}} \rightarrow \mathrm{W_{400}^{\cdot +}}$	4 - 15	

Difficulty to distinguish ET and vibrational cooling in the experiments

[1] Immeln et al JACS 134 (2012) 12536

CDFT QM/MM calculations 110 000 atom including 34 000 water molecules, 298.15 K PCCP 12 (2016) 21442

$$\hat{H} = \hat{H}_S + \hat{H}_B + \hat{H}_{BS}$$

$$\hat{H}_{S} = \begin{bmatrix} \epsilon_{1} & H_{12} \\ H_{12} & \epsilon_{2} \end{bmatrix} = \epsilon_{1} |D\rangle \langle D| + \epsilon_{2} |A\rangle \langle A| + H_{12}(|D\rangle \langle A| + |A\rangle \langle D|)$$

$$\hat{H}_{B} = \sum_{i=1}^{N} \frac{\hbar w_{i}^{D}}{2} (\hat{p}_{i}^{2} + \hat{x}_{i}^{2}) |D\rangle \langle D| + \sum_{i=1}^{N} \frac{\hbar w_{i}^{A}}{2} (\hat{p}_{i}^{2} + \hat{x}_{i}^{2}) |A\rangle \langle A|$$

$$\hat{H}_{BS} = \sum_{i=1}^{N} k_{i}^{D} x_{i} |D\rangle \langle D| + \sum_{i=1}^{N} k_{i}^{A} x_{i} |A\rangle \langle A|$$

Difficulty to define the initial condition: two extreme cases This initial state is thermalized

Slow bath relaxation:

Vertical instantaneous transition for the electronic degrees of freedom Bath Centered on the ground state curve

Fast bath relaxation:

Bath relaxed onto the individual ET electronic state

Experiment (ps)	Marcus Theory	HEOM	This work (fast)
4 - 15	4.97	0.82	3.3

HEOM : Hierarchical Equations of Motions

Fast and slow bath relaxations: in reality mixed scenario depending on the bath modes

Process seems to be dominated by low-frequency modes

Low-frequency modes partly linked to the molecules of water, which can relax fast

Full ab initio approach

The process strongly depends on the differences in the relaxation time-scale between electronic and nuclear (bath) degrees of freedom

Necessity to have the potential and in the adapted form Difficult for high accuracy (time-dependent) Very slow processes: very difficult Efficient: fast quantum process involving many eigenstates Treatment of Fermionic and Bosonic systems

We would like to thank the following who contributed to this work:

🖙 Z. Zhao, Z. Zhang, and D.-H. Zhang (Dalian, China).

Hans-Dieter Meyer, Oriol Vendrell, Markus Schröder (Heidelberg Univ.).

🖙 D. Lauvergnat (Orsay).

Funding from the ANR and CNRS are acknowledged.