Introduction to quantum computing

Anthony Leverrier, Inria Paris
&
Mazyar Mirrahimi, Inria Paris

IQUPS course 2018
Outline of the course

Courses 1 – 2: basics of quantum computing and standard algorithms (Anthony Leverrier)

- May 29 (9:15 - 10:45): basics of quantum computing: qubits, measurements, circuit model, query complexity model, Simon’s algorithm
- June 5 (11:00 – 12:30): quantum Fourier transform, Shor’s algorithm, Grover’s algorithm

Courses 3 – 4: quantum error correction and quantum fault tolerance (Mazyar Mirrahimi)

- June 18: basics of quantum error correction (discretization of errors, Shor an Steane codes) and fault-tolerance
- June 25: towards experimental implementation: surface codes and continuous-variable codes
Related material

This course is largely inspired from the remarkable set of notes by Ronald de Wolf, available online.

- Quantum Computing: Lecture Notes by Ronald de Wolf

Other resources include:

- the classic “Quantum computation and quantum information” by Nielsen & Chuang
- Lecture notes by John Preskill
 http://www.theory.caltech.edu/people/preskill/ph229/
The end of Moore’s law

https://www.anandtech.com/show/12693/

intel-delays-mass-production-of-10-nm-cpus-to-2019
Why study quantum computing?

quantum computation

- investigation of the computational power of computer based on quantum mechanical principles
- main objective: find algorithms with speedup compared to classical algos

Motivations

- **miniaturization** reaches levels where quantum effects become non-negligible. One can either try to suppress them or to exploit them.

- **speedups** for computation, but also applications in cryptography

- objective is to understand the power of the strongest-possible computing devices allowed by *Nature*
Genesis of quantum computing

Feynman 1981

"Can quantum systems be probabilistically simulated by a classical computer? [...] The answer is almost certainly, No!"

- \Rightarrow use quantum systems to simulate quantum systems!
- \Rightarrow birth of quantum simulation

Deutsch 1985

- quantum Turing machine
- existence of a universal machine
- \Rightarrow birth of quantum computing

Bernstein, Vazirani 1993

- efficient quantum Turing machine (complexity class BQP)
- Bernstein-Vazirani problem: $f : \{0, 1\}^n \rightarrow \{0, 1\}$ such that $f(x) = a \cdot x$

 Find a. \Rightarrow ok with 1 quantum query vs n classically
The first algorithms

Simon, Shor 1994

exponential speedups for

- period finding
- factoring!! *very surprising* \(\Rightarrow\) sparked a lot of interest in the field
- discrete logarithm

\(\Rightarrow\) exploits Quantum Fourier Transform
\(\Rightarrow\) consequences for public-key cryptography: breaks most cryptosystems deployed today

Grover 1996

- search an n-item list with \(O(\sqrt{n})\) queries
- lots of applications (find collisions, approximate counting, shortest path)

but only quadratic improvement
Basics of quantum computation
in this course, we restrict ourselves to pure n-qubit states: $|\psi\rangle \in (\mathbb{C}^2)^{\otimes n}$

$$|\psi\rangle = \alpha_{0\ldots00}|0\ldots00\rangle + \alpha_{0\ldots01}|0\ldots01\rangle \cdots + \alpha_{1\ldots11}|1\ldots11\rangle$$

with $\sum |\alpha_i|^2 = 1$ (normalization) and $|i_1i_2\cdots i_n\rangle := |i_1\rangle \otimes |i_2\rangle \otimes \cdots \otimes |i_n\rangle$

in practice, one needs to deal with decoherence, and therefore mixed states but quantum fault-tolerance techniques can be applied to deal with such issues (threshold theorem): see Mazyar’s course

the state is evolved unitarily, possibly by applying the unitary U (such that $UU^\dagger = \mathbb{1}$) also on ancilla qubits initialized in $|0\rangle^{\otimes m}$:

$$|\psi\rangle \mapsto U|\psi\rangle|0\rangle^{\otimes m}$$

in this course, states are measured in the computational (standard) basis: the measurement returns the string $\vec{i} \in \{0, 1\}^n$ with probability

$$\mathbb{P}(\vec{i}) = |\langle \vec{i}|\psi\rangle|^2 = |\alpha_{\vec{i}}|^2$$
Elementary gates

gate: unitary acting on a small number of qubits (typically between 1 and 3), similar to classical logic gates AND, OR and NOT

<table>
<thead>
<tr>
<th>single-qubit gates</th>
</tr>
</thead>
</table>

- **bitflip gate X**: $|0\rangle \leftrightarrow |1\rangle$

 $$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

- **phase-flip gate Z**: $|0\rangle \leftrightarrow |0\rangle$, $|1\rangle \leftrightarrow -|1\rangle$

 $$Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

- **phase-flip gate R_ϕ**: $|0\rangle \leftrightarrow |0\rangle$, $|1\rangle \leftrightarrow e^{i\phi}|1\rangle$

 $$R_\phi = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix}$$

 $T := R_{\pi/4}$

- **Hadamard gate**: $|0\rangle \leftrightarrow |+\rangle$, $|1\rangle \leftrightarrow |-\rangle$

 $$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

 $$|\pm\rangle := \frac{1}{\sqrt{2}}(|0\rangle \pm |1\rangle)$$

Elementary gates

two-qubit gates

- **controlled-not (CNOT):** flips the second input qubit if the first one is $|1\rangle$, and does nothing if the first qubit is $|0\rangle$

 $$
 \text{CNOT}|0\rangle|b\rangle = |0\rangle|b\rangle \\
 \text{CNOT}|1\rangle|b\rangle = |1\rangle|1 - b\rangle
 $$

 \[
 \text{CNOT} = \begin{pmatrix}
 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 0 & 1 \\
 0 & 0 & 1 & 0
 \end{pmatrix}
 \]

- **controlled-U (for single-qubit unitary U):**

 \[
 \begin{pmatrix}
 1 & 0 \\
 0 & U
 \end{pmatrix}
 \]
Models of quantum computing
Models of quantum computing

There are different models to describe how a quantum computer can apply computational steps to its registers of qubits.

- **quantum Turing machine** (Deutsch 1985: states, tape, transition function...)
- **circuit model**: this course
- **adiabatic quantum computing**:
 - encode your problem as a Hamiltonian H and the solution as a ground state
 - start with a ground state of an easy Hamiltonian H_0
 - slowly evolve the system by applying $(1 - \alpha(t))H_0 + \alpha(t)H$ for $\alpha(t_{init}) = 0, \alpha(t_{fin}) = 1$
 - provided that the evolution is sufficiently slow, one remains in the ground state
- **measurement-based quantum computing** (Raussendorf, Briegel 2002):
 - start with a generic highly entangled state: a *cluster state*
 - measure each qubit one by one and update following measurement angles as a function of previous measurement results

Theorem

These models are equivalent: they can simulate each other in polynomial time
The circuit model

We are mostly interested in classical problems where the input is some n-bit string \(x \in \{0, 1\}^n \), and we want an output \(y \in \{0, 1\}^m \), possibly with \(m = 1 \).

- input state: \(|\vec{x}\rangle \otimes |0\rangle^{\otimes n'} \) (input + ancilla)
- unitary operation: \(U \) described as a quantum network of elementary gates
- output: measure the final \((n + n')\)-qubit state in the computational basis

Note that the answer is generally probabilistic. Sometimes we repeat the process a few times and take a majority vote.

Question

can any unitary operation \(U \) acting on \(N \) qubits be decomposed into a circuit of elementary gates acting on 1 or 2 qubits?

\[\Rightarrow\] universal gate set: reduces to infinitely-many elementary gates

\[\Rightarrow\] Kitaev-Solovay theorem: approximate unitary with finite gate set
Universality of simple gate sets

universal gate set

Any unitary on N qubits can be decomposed using
- arbitrary single qubit gates
- the 2-qubit CNOT gate

Problem: it is not realistic to be able to perform arbitrary single-qubit gates with infinite precision. We would like a finite gate set.

Kitaev-Solovay theorem

The following sets allow to approximate any unitary arbitrarily well:
- CNOT, Hadamard H, T-gate $T = R_{\pi/4}$
- Hadamard and Toffoli (3-qubit gate CCNOT) if the unitary have only real entries

Solovay-Kitaev: any 1 or 2-qubit unitary can be approximated up to error ε using $\text{polylog}(1/\varepsilon)$ gates from the set.
Quantum parallelism

The main motivation for quantum computation: “perform many computations in superposition”.

Lemma

Suppose we have a classical algorithm that computes some function $f : \{0, 1\}^n \rightarrow \{0, 1\}^m$. Then we can build a quantum circuit U_f consisting only of Toffoli gates that maps

$$U_f : |x\rangle|0\rangle \mapsto |x\rangle|f(x)\rangle.$$

Not $|x\rangle \mapsto |f(x)\rangle$ … not unitary in general!

Consequence:

$$H^\otimes n |0\rangle^\otimes n = \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} |x\rangle$$

$$U \left(\frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} |x\rangle|0\rangle \right) = \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} |x\rangle|f(x)\rangle$$
Quantum parallelism

The main motivation for quantum computation: “perform many computations in superposition”.

Lemma

Suppose we have a classical algorithm that computes some function \(f : \{0, 1\}^n \rightarrow \{0, 1\}^m \). Then we can build a quantum circuit \(U_f \) consisting only of Toffoli gates that maps

\[
U_f : |x\rangle|0\rangle \mapsto |x\rangle|f(x)\rangle.
\]

Caution!

- One applies \(U_f \) just once, but the final state contains \(f(x) \) for all \(2^n \) input values.
- However, measuring the output state in the computational basis only yields a single (random) couple \((x, f(x))\).
- Holevo theorem: one cannot extract more than \(n \) bits of information from \(n \) qubits.
The early quantum algorithms
Query complexity model

Standard circuit model: input of computation is encoded in the input state; quantum circuit; measurement in computational basis . . . how many gates?

Query complexity model: the input (e.g. a function) is accessed as a black box

N-bit input $x = (x_1, \ldots, x_N) \in \{0, 1\}^N$

- Usually, $N = 2^n$: bit x_i can be addressed with n-bit string i.
- Example: x is a Boolean function $f : \{0, 1\}^n \rightarrow \{0, 1\}$, $f(i) \equiv x_i$
- input = N-bit memory (Random Access Memory) which can be accessed as a black-box at any point we want.
- modeled as a quantum unitary on $n + 1$ qubits (n-bit address and single-bit target)

$$O_x : |i, 0\rangle \leftrightarrow |i, x_i\rangle$$
$$O_x : |i, b\rangle \leftrightarrow |i, x_i \oplus b\rangle$$

- alternative phase-oracle: $O_{x, \pm} : |i\rangle \leftrightarrow (-1)^{x_i} |i\rangle$
Some early algorithms

provide speedups in query complexity model, not in the standard circuit model

Deutsch-Jozsa (1992)

For $N = 2^n$, we are given $x \in \{0, 1\}^N$ either
- constant: all x_i are equal
- balanced: half of x_i are 0, half are 1

Find which one.

Bernstein-Vazirani (1993)

For $N = 2^n$, we are given $x \in \{0, 1\}^N$ such that $\exists a \in \{0, 1\}^n$ with $x_i = (i \cdot a) \mod 2$.

Find a.

Simon (1994)

For $N = 2^n$, we are given $x = (x_1, \ldots, x_N)$ with $x_i \in \{0, 1\}^n$ with the property that $\exists s \neq 0 \in \{0, 1\}^n$ such that $x_i = x_j \iff (i = j \text{ or } i = j \oplus s)$.

Find s.

Quantum computing
Deutsch-Josza

the problem

For $N = 2^n$, we are given $x \in \{0, 1\}^N$ either
- constant: all x_i are equal
- balanced: half of x_i are 0, half are 1

Find which one.

complexity

- classical deterministic (no errors): at least $N/2 + 1$ queries needed
- classical if errors are allowed: constant number of queries
- quantum: single query!

\Rightarrow separation quantum vs exact classical
Deutsch-Josza

\[|0^n\rangle \rightarrow \frac{1}{\sqrt{2^n}} \sum_{i \in \{0,1\}^n} |i\rangle \rightarrow \frac{1}{\sqrt{2^n}} \sum_{i \in \{0,1\}^n} (-1)^{x_i} |i\rangle \]

\[\rightarrow \frac{1}{\sqrt{2^n}} \sum_{i \in \{0,1\}^n} (-1)^{x_i} \sum_{j \in \{0,1\}^n} (-1)^{i \cdot j} |j\rangle \]

Amplitude of \(|0^n\rangle\) state:

\[\frac{1}{\sqrt{2^n}} \sum_{i \in \{0,1\}^n} (-1)^{x_i} = \begin{cases} 1 & \text{if } x_i = 0 \quad \forall i \\ -1 & \text{if } x_i = 1 \quad \forall i \\ 0 & \text{if } x \text{ is balanced} \end{cases} \]

Yields \(|0^n\rangle\) iff \(x\) is constant: 1 query and \(O(n)\) operations
Bernstein-Vazirani

the problem: linear function, find coefficients

For $N = 2^n$, we are given $x \in \{0, 1\}^N$ such that $\exists a \in \{0, 1\}^n$ with $x_i = (i \cdot a) \mod 2$. Find a.

complexity

- randomized classical, small errors allowed: needs at least n queries (each query gives at most 1 bit of info)
- quantum: single query!

same algorithm as Deutsch-Josza: $(-1)^{x_i} = (-1)^{(i \cdot a)} \mod 2 = (-1)^{i \cdot a}$

state after the query:

$$
\frac{1}{\sqrt{2^n}} \sum_{i \in \{0,1\}^n} (-1)^{x_i} |i\rangle = \frac{1}{\sqrt{2^n}} \sum_{i \in \{0,1\}^n} (-1)^{i \cdot a} |i\rangle
$$

$$
H = H^{-1} \implies |a\rangle
$$
Simon’s algorithm

Exponential speedup for query complexity (we count queries, not ordinary operations)

Hidden period for 2-to-1 function

For $N = 2^n$, we are given $x = (x_1, \cdots, x_N)$ with $x_i \in \{0, 1\}^n$ with the property that

$$\exists s \neq 0 \in \{0, 1\}^n \text{ such that } x_i = x_j \iff (i = j \text{ or } i = j \oplus s).$$

Find s.

Note that x_i is an n-bit string, not a single bit.

Complexity

- randomized classical algorithm in $O(\sqrt{2^n})$ queries with birthday paradox
- this is essentially optimal for classical algorithms
- quantum (Simon’s algorithm): $O(n)$ queries

\implies exponential separation quantum vs randomized classical
Simon's algorithm

\[|0\rangle \xrightarrow{n} \mathcal{H}^\otimes n \quad \text{U}_x \quad \mathcal{H}^\otimes n \quad \xrightarrow{} \]

|0^n\rangle|0^n\rangle \rightarrow \frac{1}{\sqrt{2^n}} \sum_{i \in \{0,1\}^n} |i\rangle|0^n\rangle \rightarrow \frac{1}{\sqrt{2^n}} \sum_{i \in \{0,1\}^n} |i\rangle|x_i\rangle

Measure 2nd n-bit register: yields \(x_i \in \{0,1\}^n \), collapses the first register to superposition of 2 indices compatible with \(x_i \)

\[\frac{1}{\sqrt{2}} (|i\rangle + | i \oplus s \rangle)|x_i\rangle \]

Hadamard to first n qubits:

\[\frac{1}{\sqrt{2^{n+1}}} \left(\sum_{j \in \{0,1\}^n} (-1)^{i \cdot j} |j\rangle + \sum_{j \in \{0,1\}^n} (-1)^{(i \oplus s) \cdot j} |j\rangle \right) = \frac{1}{\sqrt{2^{n+1}}} \sum_{j \in \{0,1\}^n} (-1)^{i \cdot j} (1 + (-1)^{s \cdot j}) |j\rangle \]
Simon’s algorithm

Measure state

$$\frac{1}{\sqrt{2^n+1}} \sum_{j \in \{0,1\}^n} (-1)^{ij}(1 + (-1)^{s\cdot j}) |j\rangle$$

- $|j\rangle$ has nonzero amplitude iff $s \cdot j = 0 \mod 2$.
- The measurement outcome is uniformly drawn from $\{j \mid s \cdot j = 0 \mod 2\}$.
- \Longrightarrow linear equation giving information about s
- repeat until we get $n - 1$ independent linear equations
- solutions are 0 and s via Gaussian elimination (classical circuit of size $O(n^3)$

\Longrightarrow exponential speedup in the query complexity model! Can we get it in the standard model as well?
Recap

- quantum computers can exploit quantum parallelism, but cannot really do an exponential number of computations in parallel
- one single output!
- different models of quantum computing: circuit, measurement-based, adiabatic computing, all equivalent (up to polynomials)

Today: “speedup” in query complexity model

- black-box access to a function
- provable, exponential improvement, but not in a real situation

Next week: speedup in standard gate complexity model

- Shor’s algorithm for factoring
- Grover’s algorithm for search