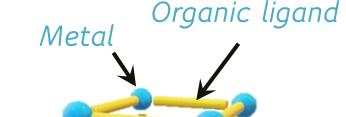


HKUST-1/TiO₂ immobilization into chitosan beads for H₂ generation by photocatalysis

Marie Le Pivert^{1*}, Alisha Khan¹, Mireille Benoît¹, Johnny Deschamps², Hynd Remita¹


¹ Institut de Chimie Physique, UMR 8000 CNRS, Université Paris-Saclay, F-91405 Orsay, France ² Unité Chimie et Procédés (UCP), ENSTA, Institut Polytechnique de Paris, F-91120 Palaiseau, France *corresponding author: marie.le-pivert@universite-paris-saclay.fr

I. Introduction

> 2030 Agenda for sustainable development and net zero emissions by 2050 : green and renewable fuels are required

- > Hydrogen (H₂) from water splitting produced by photocatalysis : green fuels with zero emission
- > Challenge : new efficient photocatalysts development for H₂ production by photocatalysis

- > Hybrid nano-heterostructured multi-phase materials as efficient photocatalysts such as MOFs/TiO₂. MOFs are hybrid (organic/inorganic) micro- or meso-porous ordered solids with high porosity
- > Efficient supported photocatalysts development for easy collection and reuse

MOFs

II. Selection of the most efficient photocatalyst

Based on our team work (A. Khan PhD), HKUST-1/TiO₂ (1:20) appeared as promising photocatalyst for H_2 production. Copper MOFs HKUST-1 3 Cu²⁺

a) Well-know photocatalyst for composite development

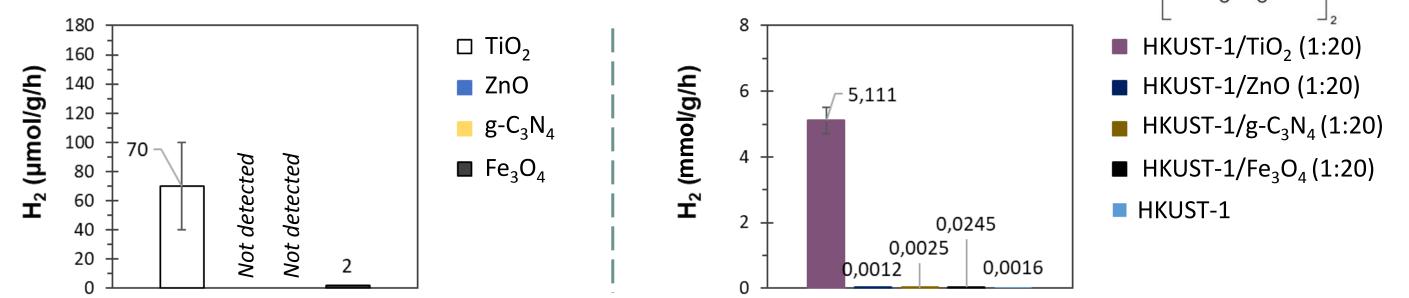


Fig. 2. H₂ production rate as a function of the photocatalyst and the composite (Xenon lamp 300W, 20ml MeOH/H₂O (1:3) agitation).

- TiO₂ is more relevant for H₂ production than ZnO, $g-C_3N_4$ and Fe₃O₄.
- HKUST-1/TiO₂ (1:20) is very promising for green H_2 production.

b) Ternary composite development

HKUST-1/TiO₂ (1:20) is promising for H₂ production. Nevertheless, it mainly

III. Photocatalyst beads development

Beads based on chitosan, which is a biopolymer, was selected to encapsulate photocatalyst as a promising solution for easy collection and reuse.

a) Composite beads synthesis

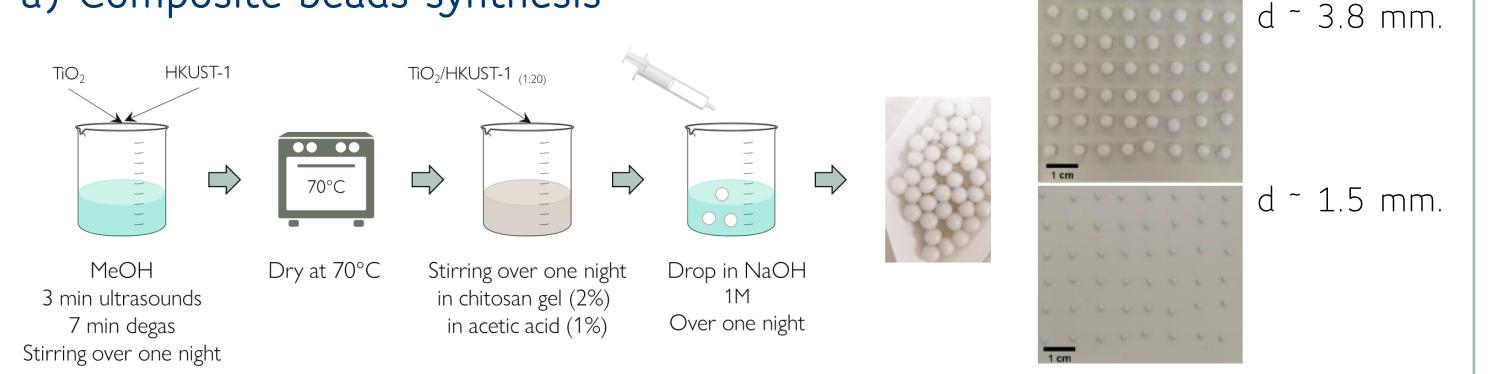


Fig.4. Schematic experimental set-up for synthesis of beads nanocomposite of TiO₂/HKUST-1 (1:20).

Fresh and humid beads could be easily destroyed and smashed into powder. In contrast, dried beads are electrostatic and very solid, making them resistant to manual destruction.

b) Beads characterization

absorbs in UV light. The aim is then to develop ternary composites.

• $TiO_2/HKUST-1/g-C_3N_4$: influence of the synthesis and the ratio

Synthesis 1: Catalysts stirring in 5mL of methanol (Samples named as a function of the catalysts addition order). <u>Synthesis 2</u>: Melamine and TiO₂ \rightarrow 550°C for 4 h (10°C/min) \rightarrow powdered \rightarrow 500°C for 2 h (5°C/min) \rightarrow powdered \rightarrow catalysts addition and stirring over one night.

Fig. 3. H₂ production rate as a function of the composite: different synthesis and ratio (Xenon lamp 300W, 20ml MeOH/H₂O (1:3) agitation).

- The binary system (HKUST-1/TIO2) is more efficient than the ternary system (TIO2/HKUST- $1/g-C_{3}N_{4}).$
- TiO₂/HKUST-1/Ni-MOF-74: influence of the ratio
- H₂ production rate (mmol/g/h): Ni-MOF-74 seems neither unfavorable HKUST-1/TiO₂ (1:20): $5,11 \pm 0,40$ nor beneficial for H_2 production in the TiO₂/HKUST-1/Ni-MOF-74 (93:5:2): 4,88 ± 0,63 TiO₂/HKUST-1/Ni-MOF-74 (92:5:3): 5,43 ± 0,15 ternary composite (TiO₂/HKUST-1/Ni-MOF-74). $TiO_2/HKUST-1/Ni-MOF-74$ (92:5:3): 5,05 ± 0,08

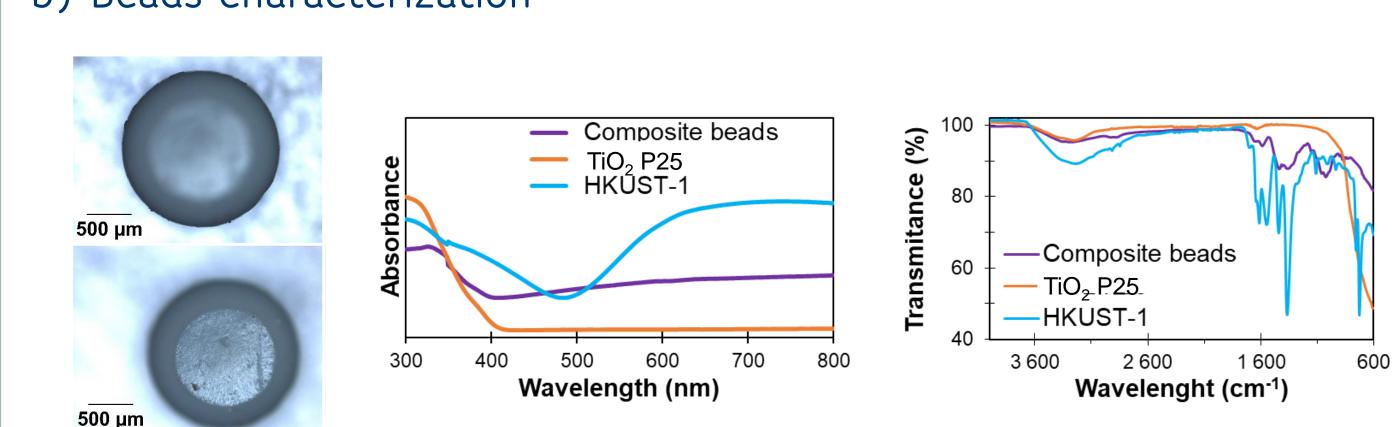
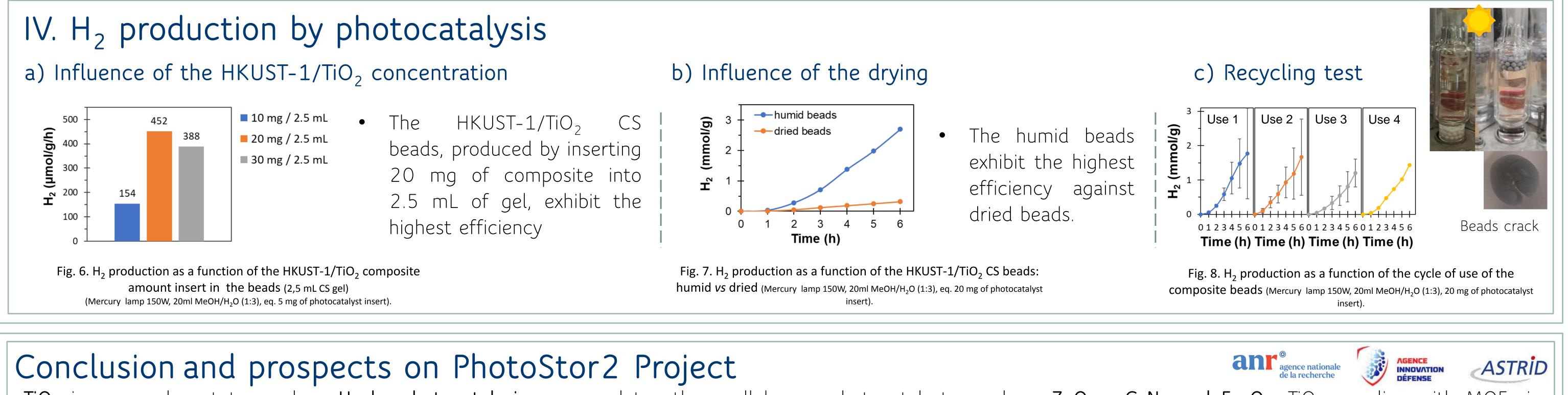



Fig.5. Optic images of composite dried beads; UV-visible absorbance spectra and FT-IR spectra of composite beads, TiO₂ and HKUST-1.

- The obtained HKUST-1/TiO₂ CS beads have a good spherical appearance and uniform size.
- The HKUST-1/TiO₂ composite exhibits good stability throughout the bead synthesis process and shows resistance to both acidic and basic pH levels used during the process.
- No Time Resolved Microwave Conductivity (TRMC) signal was recorded for the smashed HKUST-1/TiO₂ composite beads, probably due to the low amount of photocatalyst in comparison to the amount of chitosan.

TiO₂ is more relevant to produce H₂ by photocatalysis compared to other well-known photocatalysts, such as ZnO, g-C₃N₄ and Fe₃O₄. TiO₂ coupling with MOFs is promising for green fuels generation with a production rate of 5.1 mmol/g/h for HKUST-1/TiO₂ (1:20). Ternary composite based on HKUST-1/TiO₂: not added value with Ni-MOF-74 and adverse effect with g-C₃N₄. Beads based on chitosan to embed photocatalysts, which are at nanometer scale, are promising for a sustainable H₂ generation with easy reuse but need optimization to avoid cracks. Porous bead development could be an answer to the cracking problems observed.