

A LANDSCAPE OF MAIN SEQUENCE STARS ACTIVITY

Or "How to count spots on stars?"

Lucie Degott

PhD advisors: Frédéric Baudin (IAS), Réza Samadi (LESIA)

ALL SCALE

1. 2 5 1 40

Conclusion

INTRODUCTION - WHAT IS A STAR ?

ALL BRAIN

1. 2 2

Conclusion

INTRODUCTION - WHAT IS A STAR ?

Answer 1 : A bright point in the night sky

© Stephen Rahr

2

Kepler data

Conclusion

INTRODUCTION - WHAT IS A STAR ?

Answer 1 : A bright point in the night sky

Answer 2 : A luminous astrophysical object at hydrostatic equilibrium capable of making fusion reaction.

© Stephen Rah

S. . Bedage

Conclusion

INTRODUCTION - WHAT IS A STELLAR ACTIVITY ?

Stellar activity : Variability due to magnetic phenomena on the surface of stars.

Conclusion

INTRODUCTION - WHAT IS A STELLAR ACTIVITY ?

Stellar activity : Variability due to magnetic phenomena on the surface of stars.

Sun case :

Sun spots/ active regions

Eruptions / flare

Solar cycle

Conclusion

INTRODUCTION - WHAT IS A STELLAR ACTIVITY ?

Stellar activity : Variability due to magnetic phenomena on the surface of stars.

Sun case :

Sun spots/ active regions

Eruptions / flare

Solar cycle

WHY IS IT IMPORTANT TO STUDY STAR ACTIVITY ?

Improve the detection of exoplanets and better understand the interaction between stars and the planetary system.

-

WHY IS IT IMPORTANT TO STUDY STAR ACTIVITY ?

Improve the detection of exoplanets and better understand the interaction between stars and the planetary system.

Better understand the intern and extern magnetic field structure of the stars -> better understand

the dynamo effect of the stars.

DYNAMO EFFECT

Definition: capacity of a magnetized fluid to maintain and/or amplify its magnetic field despite ohmic dissipation.

Translation : the effect that maintains the magnetic field of a star.

2 ingredients :

Convection

Differential rotation

DYNAMO EFFECT

Definition: capacity of a magnetized fluid to maintain and/or amplify its magnetic field despite ohmic dissipation.

Translation: the effect that maintains the magnetic field of a star.

2 ingredients :

Convection

Differential rotation

Rossby number :

DYNAMO EFFECT

Definition: capacity of a magnetized fluid to maintain and/or amplify its magnetic field despite ohmic dissipation.

Translation : the effect that maintains the magnetic field of a star.

2 ingredients :

Convection

Differential rotation

rot

Kepler data

Conclusion

WHAT IS A SPOT ?

Hight activity

Sun case :

Sun spots/ active regions

Coronal loop

 \rightarrow Spots are magnetic activity tracers

ALL BRAN

Conclusion

HOW TO OBSERVE STAR SPOT ?

Sun case :

Sun spots/ active regions

A star is a bright point is the night sky

Conclusion

HOW TO OBSERVE STAR SPOT ?

Light curve : evolution of the luminosity of an astrophysical object versus time.

A star is a bright point is the night sky

Sun case :

Conclusion

HOW TO OBSERVE STAR SPOT ?

Temporal domain

Is it possible to extract information about the spots ?

Problem : there is a lot of degeneracies in this problem.

- The obliquity of the star with respect to the line of sight
- The lifetime of the spots
- Its temperature
- Its size

Conclusion

HOW TO OBSERVE STAR SPOT ?

Is it possible to extract information about the spots ?

Problem : there is a lot of degeneracies in this problem.

- The obliquity of the star with respect to the line of sight
- The lifetime of the spots
- Its temperature
- Its size

New approch : use the Fourier domain on a large sample of stars.

 \rightarrow Extract mean informations instead of single properties of spots.

 \rightarrow Analyse the trends that are showing up using a large number of stars

Model explanation

Kepler data

Conclusion

NEW APPROACH

Analytical approach gives 3 proxies :

- The transit duration (Prot/2)
- The intrinsic evolution time spot
- And an information about spot surface :
- The spot coverage in term of surface and temperature.

Has been tested on simulations
Has been tested on solar data

3 new "proxy" :

Transit proxy

Lifetime proxy

Coverage proxy

KEPLER DATA

Model explanation

Simulation

Kepler data

Conclusion

McQuillan et al. 2014 sample :

- 34 030 main sequence stars
- No exoplanets transits in the light curve
- Estimation of the rotation period
- Other parameters: Mass, Teff, log ...
- 2 rotations regimes

Model explanation Simulation

Kepler data

Conclusion

Lot of surface covered

Star density

KEPLER DATA

Surface proxy

Less surface covered

Model explanation

Simulation

Kepler data

Conclusion

Lot of surface covered

Star density

KEPLER DATA

Rossby number :

$$N_{Ross} = \frac{P_{rot}}{\tau_g}$$

Differential rotation Convection

Less surface covered

Model explanation

Simulation

2.0 7.0 Soleil 1.2 6.5 1.5 1.0 6.0 **6** mass) Rossby Amplitud 0.8 olar 5.5 Ś SS Ñ й М 0.6 Spectra 5.0 0.5 4.5 0.2 0.1 70 10 20 30 50 60 40 Rotation period (days)

CONCLUSION

- ✓ Three regimes of activity !
- Short spots and low surface coverage (Ro >1 and high mass stars)
- Long spots and low surface coverage (Ro <1)
- Long spots and hight surface coverage (Ro ≈ 1)

Introduction **PERSPECTIVE**

Model explanation

Simulation

Conclusion

- Better understand the physical meaning of the spots lifetimes
- What does the different regime means in term od dynamo effects
- Understand the role of faculae
- Link with asteroseismology
- Impact of differential rotation

Link with numerical simulations

THANK YOU FOR YOUR ATTENTION

KEPLER DATA

Introduction Model explanation Simulation

Kepler data

Conclusion

2.00 - 1.75 1.2 10² - 1.50 1.0 Mass (Solar mass) - 1.25 Lifetime (days) t_{life}/P_{Rot} A. 2 5 - 0.75 0.50 0.4 - 0.25 0.2 Density contour 0 0.00 10^{0} 10³ 107 10² 106 108 Spectra Amplitude

11

CONFIRMATION BY SIMULATIONS

Surface proxy

Transit proxy

Lifetime proxy

✓ Ampltide ∝ Cumulated Surface

✓ The model finds the value of the transit time

✓ The model finds the value of the lifetime

Model explanation

Simulation

2vrot

3vrot

4vrot

ν

ANALYTICAL APPROACH

Temporal domain

Fourier domain

Two time information in a spot transit :

- The transit time (= Prot/2)
- The lifetime of the spot

4

