

ILV

Présentation du laboratoire

Nom du Laboratoire	Institut Lavoisier de Versailles	
Acronyme	ILV	
Adresse	5 Avenue des États-Unis, 78000 Versailles	
Site web	https://www.ilv.uvsq.fr/	
Tutelles	UMR CNRS 8180	
Graduate School(s) de rattachement	GS Chimie	
Autres Ol d'intérêt	2IM, HEALTHI, BIOPROBE, IES	
Directeur du laboratoire	Emmanuel MAGNIER	
Email	Emmanuel.magnier@uvsq.fr	
Téléphone	+33139254466	

Personne contact du laboratoire pour PSiNano

Nom	Prénom	Fonction	Email	Téléphone
KREHER	David	Professeur	David.kreher@uvsq.fr	+33139254364

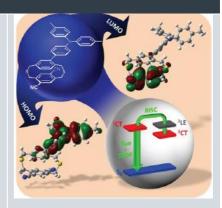
Présentation des équipes de recherche

Équipe 1

Nom de l'équipe	Synthèse ORGanique (SORG)	
Site Web de l'équipe	https://www.ilv.uvsq.fr/synthese-organique-sorg	
Nombre de personnels	21 permanents, 4 post-doctorants, 14 doctorants	

Liste des permanents de l'équipe appartenant au groupe « matériaux fonctionnels »

Nom	Prénom	Fonction	Email	Téléphone
ALLARD	Emmanuel	McF	Emmanuel.allard@uvsq.fr	0139254412
DAVID	Olivier	McF	Olivier.david@uvsq;fr	0139254365
FENSTERBANK	Hélène	McF	Helene.fensterbank@uvsq.fr	0139254412
FRIGOLI	Michel	C	Michel.frigoli@uvsq.fr	0139254423
KREHER	David	Pr	David.kreher@uvsq.fr	0139254364
WRIGHT	Karen	C	Karen.wright@uvsq.fr	0139254366

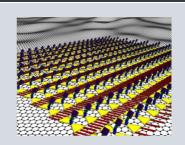

Activités de recherche

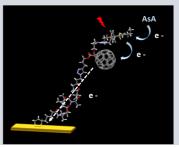
Nanomatériaux émissifs et dispositifs optoélectroniques

Le thème regroupe des activités traitant de la synthèse de nanomatériaux ayant des propriétés d'émission.

Cela inclut des dérivés du paracyclophane ou bien de la pyridazine présentant un caractère dit TADF (= 3eme génération d'émetteurs organiques), des complexes de coordinations s'avérant phosphorescents, ...

Il s'agit donc d'optimiser/fonctionnaliser des Donneurs et Accepteurs (cœurs BODIPY, PDI, BTD, , ...) pour moduler leurs niveaux HOMO ou LUMO tout en améliorant l'ordre au sein du matériau en bulk, pour obtenir une meilleure efficacité une fois ces matériaux actifs insérés dans des dispositifs (OFETs, OLEDs, Diodes Laser, application thermoélectrique).

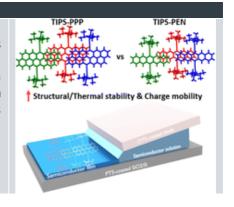



Développement de stratégies pour la nanostructuration de surfaces

D'un côté nous imaginons des briques moléculaires de base pour ensuite les agencer de manière contrôlées (via des interactions non-covalentes) sur des substrats de graphite ou graphène, pour aller vers des auto-assemblages 2D poreux.

D'un autre côté, nous mettons en place une méthodologie originale (via des tectons Janus) pour positionner de manière régulière et sur de larges domaines des entités actives en dehors du plan (= organisations 3D) permettant un découplage de la surface.

Enfin, nous synthétisons des architectures moléculaires complexes associant des peptides à des dyades organiques (BODIPY, Fullerène C60) afin de concevoir des monocouches auto-assemblées (SAMs) sur or. Ces SAMs fonctionnalisées ouvrent à la voie à la réalisation de systèmes capable de générer du courant suite à un stimulus lumineux.



Développement de matériaux polycycliques ou quinoides

D'une part des stratégies sont optimisées pour l'obtention de cages moléculaires pouvant servir soit à la capture de molécules ou ions invités soit à des applications en catalyse.

D'autre part des semiconducteurs polyaromatiques présentant un faible gap électronique sont étudiés pour fortement augmenter la mobilité des charges, en lien avec une meilleure compréhension des relations structure/propriété.

Lien Recherche-Formation

Nous sommes favorables à une meilleure diffusion de la connaissance sur ces thématiques, en plus de la création de filières « matériaux » plus visibles dans le périmètre de Paris-Saclay qui réuniraient des théoriciens, des chimistes de synthèse, des physicochimistes, des physiciens voire des technologues..

Collaborations sur le plateau de Saclay

Laboratoire	UPS/IPP/Ind	Thème de la collaboration	
SCBM,	CEA Saclay	Emetteurs TADF + mesures de luminescence circulairement polarisée	
ICMMO	UPS	Catalyse hétérogène supportée	
PPSM / ISMO	ENS / UPS	Etudes photophysiques	
LEPO	CEA Saclay	Matériaux 2D confinés sur surface, caractérisations STM, Plasmonique	
LIST	CEA Saclay	Fabrication de scintillateurs plastiques	

Principales Collaborations nationales

Laboratoire	Institution	Pays	Thème de la collaboration
LPL	Université Sorbonne Paris Nord	Fr	Laser organiques et diodes laser organiques, mesures ASE
IPCMS	Université de Strasbourg	Fr	Caractérisation structurale de cristaux liquides
IPCM	Sorbonne Université	Fr	Synthèse et caractérisation de polymères
INSP	Sorbonne Université	Fr	Interactions excitons/spins/physique du solide
LISE	Sorbonne Université	Fr	Electrochimie Ultra-rapide
LRS	Sorbonne Université		Analyse de surface

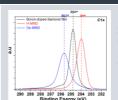
Principales Collaborations Internationales

Laboratoire	Institution	Pays	Thème de la collaboration
OPERA	Kyushu University	Japon	OLEDs, détermination de niveaux HOMO/LUMO, calculs
			théoriques

Équipe 2

Nom de l'équipe	Electrochimie et Physico-chimie aux Interfaces (EPI)	
Site Web de l'équipe	https://www.ilv.uvsq.fr/electrochimie-et-physicochimie-aux-interfaces-epi	
Nombre de personnels	6 permanents, 2 post-doctorants, 3 doctorants, 2 ATER	

Liste des permanents de l'équipe


Nom	Prénom	Fonction	Email	Téléphone
AUREAU	Damien	CR	Damien.aureau@uvsq.fr	0139254385
BECHU	Solène	CR	Solene.bechu@uvsq.fr	0139254386
BOUTTEMY	Muriel	IR	Muriel.bouttemy@uvsq.fr	0139254296
FREGNAUX	Mathieu	IR	Mathieu.fregnaux@uvsq.fr	0139254395
GONCALVES	Anne-Marie	Pr	Anne-marie.goncalves@uvsq.fr	0139254404
SIMON	Nathalie	Pr	Nathalie.simon@uvsq.fr	0193254485

Activités de recherche

Nano-objets / Physicochimie à l'échelle nanométrique

L'équipe EPI a une activité de recherche fondamentale et appliquée importante dans le domaine des nanomatériaux et des couches ultraminces. Elle est spécialisée dans la maitrise et contrôle de la chimie de surface de semiconducteurs II-VI, III-V, Si, métaux, oxydes et polymères. Une de ses spécificités repose sur l'utilisation de la chimie et (photo)électrochimie pour réaliser des modifications à l'échelle nanométrique des surfaces. L'équipe possède également une forte expertise sur la caractérisation chimique par spectroscopies électroniques parfaitement adaptées aux dimensions nanométriques des objets d'étude. Elle s'appuie sur un parc instrumental dédié à l'analyse multi-échelle des surfaces et interfaces, doté notamment de spectromètres XPS/UPS et d'une nano-sonde Auger (taille de sonde ultime 12 nm) et développe des stratégies analytiques pour répondre au besoin croissant d'analyse à l'échelle sub-micrométrique. Parmi les travaux récents, on peut citer les études sur l'utilisation de nanocristaux de diamants, tant par rapport à leur activité électrochimique qu'à leur caractérisation ultime (terminaison de surface, position du maximum de bande de valence), étape indispensable dans les prometteuses utilisations de celles-ci.

Par ailleurs, l'équipe étudie les matériaux 2D où la dimension verticale très faible est parfaitement adaptée aux outils analytiques que l'équipe développe.

Spectres C1s de surface et nanocristaux de diamants

Analyse par Auger en sonde localisée d'une structure poreuse inédite obtenue sur InP dans NH₃ liq.

Modification chimique d'électrodes / Evolution des matériaux

Cet axe scientifique repose sur une expertise reconnue de l'équipe EPI en (photo)électrochimie interfaciale sur Semiconducteur dans l'eau et dans l'ammoniac liquide, l'électrodépôt de métaux, la fonctionnalisation de surfaces et leur évolution dans le temps. En effet, l'équipe possède un parc électrochimique de haute technicité pour contrôler et élaborer des films minces (5 à 100 nm) par électrodépôt ou dépôt electroless sur métaux ou semiconducteurs. La maîtrise de ceux-ci répond à des défis sociétaux

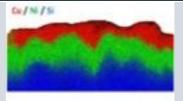
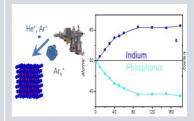


Image MEB-EDX d'un empilement conforme de Cu et Ni obtenu par


majeurs liés à la transformation des interfaces pour l'énergie (water splitting, photoanode, photocathode, batterie...) et à la connectique avancée dans les domaines des interconnexions métalliques de type damascène, mais aussi sur l'élaboration des lignes de collecte de courant pour le photovoltaïque.

L'équipe développe actuellement une thématique importante pour de nombreuses applications sur les facteurs responsables du vieillissement de semiconducteurs type III-V ou I-III-VI, générant des modifications de surface. électrodépôt sur un substrat de Si texturé pour application PV.

Réactivité et dynamique des surfaces

L'accès aux propriétés physico-chimiques des surfaces et des interfaces est un point particulièrement important pour un nombre croissant d'applications. Le parc instrumental du centre de spectroscopies CEFS2 permet d'accéder à celles-ci. La spécificité du groupe est également de regarder en détail l'influence des différents types de bombardements ioniques (monoatomiques, et agrégats de type cluster d'argon) sur des surfaces. De multiples perturbations sont étudiées, telles que les modifications chimiques, morphologiques, cristallographiques ou des propriétés optoélectroniques (glissement du maximum de bande de valence, changement de travail de sortie par UPS). Une attention particulière est aussi portée à la réactivité des surfaces (oxydes pérovskite) face à des atmosphères oxydantes (O₂, H₂O) et/ou réductrices (H₂). L'équipe utilise à cet effet l'ensemble expérimental de NAP-XPS installé sur la ligne de lumière TEMPO-B du synchrotron SOLEIL.

En laboratoire, une activité se développe autour de la caractérisation chimique de surface sous stimulation électrique ou optique. Ces expériences d'operando XPS menées initialement sur des cellules solaires sous polarisation ou sous éclairement (lumière blanche, laser) peuvent s'appliquer à tout type de dispositifs optoélectroniques. Elles permettent de mieux appréhender les mécanismes réactionnels ayant lieu à la surface et à l'interface des objets (migration ionique, changement de de degrés d'oxydation)

Exemple de suivi XPS du profilage préférentiel d'un substrat d'InP par abrasion ionique.

Lien Recherche-Formation

L'équipe EPI est particulièrement impliquée dans la formation à travers différentes actions. Le centre de spectroscopie intégré à l'équipe est également centre de formation. Il regroupe 3 spectromètres de photoémission XPS, 1 Nano-Auger, 1 appareil de mesure d'angles de contact, 1 microscope électronique à balayage ainsi qu'un polisseur ionique à section transverse et héberge 1 spectromètre XPS et 1 spectromètre à décharge de luminescence (GD-OES) dans le cadre de son partenariat avec l'IPVF (Institut Photovoltaïque d'Ile-de-France).

L'équipe est impliquée (cours TP) dans le master de chimie Physique d'Orsay. Elle a réalisé plusieurs semaines de formation XPS et Auger dans le cadre du programme CNRS Entreprises et de la conférence francophone ELSPEC, est intervenue dans l'école thématique Casa XPS en 2022 et a également organisé en mai 2023 une action Nationale de formation CNRS intitulée « *Avancées de Enjeux des Spectroscopies d'électrons* » dans le cadre de la fédération de recherche en photoémission FR SPE. Dans le cadre de cette fédération, elle participe également à la commission formation et organise 7 webinaires annuellement à destination des doctorants (qu'ils peuvent faire valider auprès de leurs EDs) sur les différents aspects de la spectroscopie de photoémission. Enfin, l'équipe a organisé en juin 2019 un workshop international XPS sponsorisé par la société ThermoFisher auquel le LabEx Charmmmat a été partenaire.

Collaborations sur le plateau de Saclay

Laboratoire	UPS/IPP/Ind	Thème de la collaboration	
LPMC	IPP	Fonctionnalisation de surfaces +	
		Projet Amphitex (textiles hydrophobes)	
LPICM	IPP	Ingénierie silicium + Modifications plasma	
GEMAC	UVSQ	Oxydes fonctionnels + ALD	

IPVF	IPP/Ind/UPS	Caractérisation chimique avancée + Photovoltaïque (matériaux, cellules)	
IPVF	UPS	Vieillissement d'absorbeurs pour le photovoltaïque	
C2N	UPS	Graphene	
NIMBE	CEA Saclay	Nano-diamants	
NIMBE / LAPA	CEA Saclay	Préservation des objets du patrimoine	
UMPHY	UMPHY	Matériaux et interfaces pour la spintronique	
LuMIn	ENS/UPS	Semi-conducteurs hybrides (organiques-inorganiques) type pérovkites	
Horiba	Ind	Approche multi-technique	
Thalès	Ind	Electronique de puissance Diamant	
III-V Lab	Ind	Semi-conducteurs III-V	
Lynred	Ind	Ingénierie chimique sur semi-conducteurs, passivation	

Principales Collaborations nationales

Laboratoire	Institution	Pays	Thème de la collaboration		
I2E	IRCP	France	Electrochimie interfaciale (NH ₃ vecteur d'énergie)		
LNIT	UBFC	France	Polymère biocapteur		
IEMN	IEMN	France	Electronique de puissance		
CRISMAT	ENSICAEN	France	Oxydes fonctionnels		
LITEN	CEA	France	Photovoltaïque		

Principales Collaborations Internationales

Timelpales collaborations internationales					
Laboratoire	Institution	Pays	Thème de la collaboration		
Nanochemistry Department,	Universit Deglistudi	Italie	(Photo-)électrochimie interfaciale (PV		
Italian Institute of Technology	di Genova		et NH ₃)		
RCAST	University of Tokyo	Japon	Nouvelles générations de cellules solaires+. H2 production		
Henry Royce Institute	University of Manchester	UK	HAXPES		
CNR@NEST	University of Pisa	Italy	Matériaux 2D		
Tyndall National Institute	University College	Ireland	Electrochimie + fonctionnalisation du		
	Cork		Germanium		
Department of Engineering	Hope College	USA	Photovoltaïque		
Lawrence Berkeley National	University of	USA	Photovoltaïque		
Laboratory	California				
KAUST Solar Center	University of Science	Arabie	Photovoltaïque		
King Abdullah	and technology	Saoudite			

Équipe 3

Nom de l'équipe	Molecules-Interactions-Materials (MIM)		
Site Web de l'équipe	https://www.ilv.uvsq.fr/molecules-interactions-materiaux-mim		
Nombre de personnels	16 permanents, 4 post-doctorants, 11 doctorants		

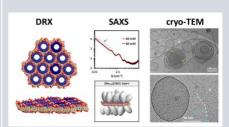
Liste des permanents de l'équipe

Liste des permanents de requipe					
	Nom	Prénom	Fonction	Email	Téléphone
	Cadot	Emmanuel	PR	emmanuel.cadot@uvsq.fr	01 39 25 55 89
	Dolbecq	Anne	DR-CNRS	anne.bastin@uvsq.fr	01 39 25 55 83
	Dumas	Eddy	MCF	eddy.dumas@uvsq.fr	01 39 25 55 83
	Falaise	Clément	CR-CNRS	clement.falaise@uvsq.fr	01 39 25 43 48
	Floquet	Sébastien	PR	sebastien.floquet@uvsq.fr	01 39 25 43 79
	Guillou	Nathalie	CR-CNRS	nathalie.guillou@uvsq.fr	01 39 25 43 74

Gérard	Isabelle	MCF	isabelle.gerard@uvsq.fr	01 39 25 42 99
Haouas	Mohamed	CR-CNRS	mohamed.haouas@uvsq.fr	01 39 25 42 54
Leclerc	Nathalie	IR-UVSQ	nathalie.leclerc@uvsq.fr	01 39 25 43 60
Lepeltier	Marc	MCF	marc.lepeltier@uvsq.fr	01 39 25 43 80
Livage	carine	MCF	carine.livage@uvsq.fr	01 39 25 55 83
Mialane	Pierre	PR	pierre.mialane@uvsq.fr	01 39 25 55 83
Oms	Olivier	MCF	olivier.oms@uvsq.fr	01 39 25 43 80
Roch	Catherine	MCF	catherine.roch@uvsq.fr	01 39 25 43 97
Sicard	Clémence	MCF	clemence.sicard@uvsq.fr	01 39 25 43 71
Steunou	Nathalie	PR	nathalie.steunou@uvsq.fr	01 39 25 43 73

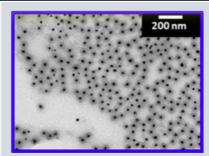
Activités de recherche

Elaboration d'interfaces à base de MOFs dans les matériaux Composites


Le thème regroupe des activités traitant la conception de nanomatériaux (couche mince, nanocristaux & nanohydrides) à base de MOFs (pour Métal-Organic Framework), leur caractérisation (DRX, TEM, porosimétrie et ellipsometry) jusqu'au développement d'applications comme l'élaboration de membranes sélectives pour la séparation du CO₂, la préparation d'adsorbants pour la capture de composés organiques volatiles, la conception d'interface MOF-enzyme pour la dégradation de polluants organiques, ou l'utilisation de nanocristaux de MOFs pour l'ultradispersion de catalyseurs à base de polyoxométallates actifs pour la réduction du CO₂ ou pour l'oxydation de l'eau.

TEM image showing the close interface between graphene oxide sheets and MOF-based nanowires.

Développement de nanomatériaux à base de POMs


Cette activité se décline en deux thèmes principaux. l'étude des interactions supramoléculaire de POM en solution aqueuse avec des unités organiques (macrocycles ou surfactants) et l'immobilisation de polyoxométallates sur des nanoparticules métalliques (Au°, Ag°) portant des groupes organiques fonctionels. Dans les deux cas, la formation de ces systèmes reposent de puissants effets de solvants qui permettent d'associer très fortement l'unité POM avec la composante organique ou la nanoparticule métallique. En présence de surfactant, les processus d'assemblage permettent de construire des systèmes lamellaires ou bien des vésicules mono- ou multiparois. Une méthodologie spécifique de caractérisation multiéchelle est déployée utilisant la DRX, la RMN (liquide et solide), le SAXS et la microscopie électronique à transmission (cryo-TEM).

Multiscale characterization of a POMsurfactant nanosystem sowing the longrange organization (DRX) which produce supramolecular isolated nanosheet (SAXS) and nansized posrous vesicules (cryo-TEM).

Nanohybrides pour la médecine

Ce thème se divise en trois activités principales. La première consiste à développer un nouvel adjuvant vaccinal à base de nanoMOFs. Ce projet est soutenu par la SATT-ParisSaclay (projets prématuration et maturation). Le deuxième projet porte sur le développement de nanovecteurs thérapeutiques multifonctionnels en associant des nanoparticules de MOF à des nanoparticules inorganiques de nature différente (Au, γ Fe₂O₃...). Cette approche a l'avantage de coupler les propriétés de libération contrôlée de médicaments des nanoMOFs aux propriétés optiques de l'or ou magnétiques de γ Fe₂O₃ très utiles en imagerie médicale (agent de contraste optique ou IRM). Ces vecteurs thérapeutiques ont été étudiées pour le traitement du cancer et des maladies inflammatoires. La troisième activité consiste à associer autour de nanoparticules métalliques (Au⁰, Ag⁰,..) des

Dispersion de nanoparticules d'or fonctionnalisées par un polyoxométallates et un anticancéreux (le zolendronate).

composantes organique/inorganique biologiquement actives et complémentaires du point de vue de leur activité (inorganiques comme des polyoxométallates et organiques comme des bisphosphonates connus pour leurs propriétés antitumorales). Ces systèmes sont étudiés pour leur activité antibactérienne et antitumorale dans applications de thérapie photodynamique, photothermale et de chimiothérapie.

Lien Recherche-Formation

L'équipe MIM recrute chaque année entre trois et quatre étudiants de M2 recherche de la formation SERP⁺ ou CHIPS de l'Université Paris-Saclay. Par ailleurs, des enseignant-chercheurs de l'équipe interviennent dans l'UE « Matériaux Hybrides Multifonctionnels » du Master CHIPS (Univ. Paris-Saclay). Par ailleurs, l'équipe est également fortement impliquée dans ses missions de formation par la recherche en participant à l'Unité d'Enseignement « Immersion en Laboratoire » dispensée en L2&L3 et en encadrant de nombreux stagiaires du M1 chimie.

Collaborations sur le plateau de Saclay

Laboratoire	UPS/IPP/Ind	Thème de la collaboration
ICMMO	UPS	(photo)(electro)catalyse
LMB	CEA	Photophysique/ photo)(electro)catalyse
ISMO	UPS	Photophysique
LPS	UPS	imagerie cryoTEM sur les systèmes POM-matière molle
Proxyma-2	SOLEIL	Analyse structurale par diffraction des rayons X (serial-X crystallography)
SATT-UPS	UPS	Projets prématurations & maturation (adjuvants vaccinaux)
C2N	UPS	Imagerie TEM

Principales Collaborations nationales

Laboratoire	Institution	Thème de la collaboration
ICSM-CEA	CEA-Marcoule	Mesures physiques – SAXS & SANS
UCEIV-EA 4492	ULCO	Mesures thermochimiques (ITC)
ISCR	Univ. Rennes	Synthèse et caractérisation de systèmes à base de POM-Cluster
LCPB	Collège de France	Photocatalyse
LRS	SU-Paris	Etude de nanoparticules biologiquement actives
IMAP	ENS-PSL	application biomédicale des MOFs
LCMCP	SU-Paris	Caractérisations de films minces de MOFs par ellipsométrie
IRCELYON	UCB-Lyon	Caractérisation de polymères de coordination
IMN	Univ. Nantes	Propriétés thermomagnétiques de systèmes à base de POMs
UMR MADIREL	AMU	Propriétés d'adsorption des MOFs
C2RMF	Ministère de la	Développement d'adsorbants à base de MOFs pour la préservation
	Culture	du patrimoine culturel

Principales Collaborations Internationales

Laboratoire	Institution	Pays	Thème de la collaboration
Eq. Pr. Werner Nau	Constructor Univ.	Allemagne	Etude des effets de solvant dans les processus d'agrégation
Eq. Pr. Carles Bo	ICIQ-Tarragone	Espagne	Calculs théoriques : DFT & dynamique moléculaire
Eq. Josep Poblet	Univ. Rovira i Virgili	Espagne	Calculs DFT
Eq. Moisès Pinto	Univ. Lisboa	Portugal	propriétés d'adsorption des MOFs
Marc Frère & Guy de Weireld	Univ. Mons	Belgique	propriétés d'adsorption des MOFs
Eq. Pr. Daoud Naoufal	Univ. Beirut	Liban	Synthèse de système hybride à base de cluster de bore
Eq. Pr Stefan Kaskel	TU Dresden	Allemagne	Propriétés d'adsorption et de flexibilité des nanoMOFs

