

LEM

Présentation du laboratoire

Nom du Laboratoire	Laboratoire d'Etude des Microstructures
Acronyme	LEM
Adresse	ONERA, BP72, 92320 Chatillon
Site web	www.lem.onera.fr
Tutelles	ONERA, CNRS
Graduate School(s) de rattachement	Physique, Chimie
Autres Ol d'intérêt	2IM
Directeur du laboratoire	Fèvre Mathieu
Email	Mathieu.fevre@onera.fr
Téléphone	01 46 73 45 94

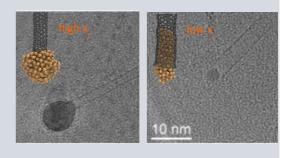
Personne contact du laboratoire pour PSiNano

Nom	Prénom	Fonction	Email	Téléphone
Loiseau	Annick	DR	Annick.loiseau@onera.fr	01 46 73 44 53

Présentation des équipes de recherche Équipe 1

Nom de l'équipe	Matériaux de basse dimension		
Site Web de l'équipe	http://lem.onera.fr		
Nombre de personnels	5 permanent, 2 post-doctorant, 5 doctorants		

Nom	Prénom	Fonction	Email	Téléphone
Amara	Hakim	C	Hakim.amara@onera.fr	01 46 73 48 90
Fossard	Frédéric	IR	Frederic.fossard@onera.fr	01 46 73 45 95
Girard	Armelle	EC	Armelle.girard@onera.fr	01 46 73 44 48
Loiseau	Annick	С	Annick.loiseau@onera.fr	01 46 73 44 53
Sponza	Lorenzo	С	Lorenzo.sponza@onera.fr	01 46 73 44 64

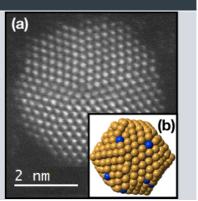

Activités de recherche

Compréhension des mécanismes de formation des nanotubes de carbone pour une synthèse sélective

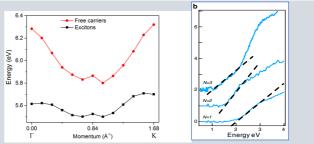
Depuis leur identification en 1991, les nanotubes de carbone ont démontré tout leur potentiel pour de multiples applications en optique, électronique, production ou stockage de l'énergie. Malgré une intense activité de recherche, on ne sait toujours pas produire de façon déterministe des nanotubes à géométrie contrôlée, dont leurs propriétés dépendent étroitement. Sur la base de nos travaux qui ont démontré que la clé était l'ingénierie des catalyseurs métalliques nécessaires à leur croissance, notre démarche est de coupler travaux expérimentaux (synthèse et caractérisation en TEM in operando ou ex situ) et modélisations atomistiques de la croissance de nanoalliages à solubilité modulée en carbone ou de carbures multimétalliques. Réseau national et international de collaborations.

Haut : Images HRTEM illustrant la croissance de nanotubes de carbone à partir de particules de fer en modes perpendiculaire et tangentiel et les modélisations atomistiques reliant ces modes au taux de carbone x_c dans la particule.

Bas: Image STEM-HAADF et cartographies chimiques EDX de particules de nanolliages Ni₃Pt.



Titre activité de recherche : Nanoparticules d'alliage en conditions réelles


Les nanoparticules (mono-, bi- ou multi-) métalliques constituent une classe de nano-objets dont on ne peut prétendre exploiter leurs propriétés si on ne connaît pas leur dynamique structurale dans leur milieu d'application. Notre démarche a donc pour vocation d'acquérir des connaissances fondamentales à l'échelle atomique sur l'interaction entre la structuration de surface et les comportements de nanoparticules dans des diverses conditions (sous gaz, pression atmosphérique et/ou à température élevée et/ou sous pression). Pour mener à bien cette activité, nous menons à la fois des études expérimentales (synthèse et caractérisation) et de simulations à l'échelle atomique. L'ensemble de cette activité repose sur un fort réseau de collaboration nationale (MPQ, CINaM, ICMMO,...).

(a) Image STEM d'une nanoparticule CuAu (b) Simulation atomistique montrant la ségrégation de l'Au (jaune) à la surface

Titre activité de recherche : Hétérostructures Van der Waals

Dans le domaine des hétérostructures Van der Waals constituées de matériaux 0, 1, 2D notre ambition se déploie sur plusieurs fronts en combinant études expérimentales et simulations ab initio ou semiempiriques : 1) le nitrure de bore révélé comme matériau 2D indispensable en tant que support ou encapsulant: développement de synthèse CVD en hétéroépitaxie, compréhension des propriétés spectroscopiques et structurales et leur capitalisation visant à évaluer le niveau de qualité requis pour les dispositifs opto-électroniques, 2) acquisition de connaissances fondamentales sur le phosphore noir en fonction du nombre de feuillets, 3) élaboration par voie sèche en boite à gants et étude des effets de couplage et des effet d'interfaces d'hétérostructures à base de BN, BP, nanotubes encapsulant des molécules photoactives ...

Gauche: Calcul ab initio de la dispersion des excitons libres (noir) et des porteurs de charge libres (rouge) dans le nitrure de bore hexagonal.

Droite: Spectres EELS du seuil d'excitation de feuillets exfoliés de Phosphore mono, bi et tri couches montrant l'augmentation du gap optique entre la tri- à la monocouche.

Collaborations sur le plateau de Saclav

I ab aveteive	LIDC/IDD/Imd	Thèmas de la callaboration
Laboratoire	UPS/IPP/Ind	Thème de la collaboration
ICMMO	UPS	 Synthèse de nanoparticules d'alliages pour la synthèse sélective de nanotubes de carbone Etude de nanoparticules multimétalliques (HEA) pour leurs propriétés mécaniques
LPICM	IPP	Modes et mécanismes de croissance par CVD et in operando dans un TEM environnemental de nanotubes de carbone
CEA-SRMP, SPEC, NIMBE	UPS	 Développement de méthodes de simulations atomistiques visant à comprendre les effets d'orientation entre couches dans les homo-hétérostructures Synthèse bottom-up de graphène Développement de modèles numériques pour étudier l'influence du magnétisme sur les propriétés structurales de nanoparticules.
UMR Physique Thales et Thales TRT	UPS/Ind	Hétérostructures à base de matériaux 2D BN et BP pour des applications en électroluminescence et spintronique
ENS Paris Saclay	UPS	Graphene quantum dots et heterostructures de matériaux 2D
GEMaC	UPS	Propriétés spectroscopiques du nitrure de bore et du phosphore noir (Cathodo/photo -luminescence, Raman)

Principales Collaborations nationales

Laboratoire	Institution	Pays	Thème de la collaboration
MPQ	U. Paris Diderot- CNRS	France	Dynamique de l'environnement sur les propriétés de nanoalliages Développement d'outils d'intelligence artificielle pour analyser les images de microscopie électronique en transmission
CINAM	U. Aix Marseille- CNRS	France	 Modélisations et simulations atomistiques thermodynamiques et cinétiques de la nucléation et croissance de nanotubes de carbone Modélisations et simulations ab initio des propriétés excitoniques et de phonons du hBN massif et 2D Développement de méthodes de simulations atomistiques visant à caractériser les propriétés structurales de nanoparticules de type HEA
DP	ENS Paris	France	Propriétés de transport (capacitif, ballistique) de dispositifs à base de graphène et de hBN
LMI	U. Claude Bernard, Lyon	France	Propriétés structurales et spectroscopiques de cristaux de BN synthétisés par une voie de céramisation
LP2N	UOGS, Bordeaux	France	 Fabrication d'hétérostructures à base de phosphore noir et étude de leurs propriétés spectroscopiques fondamentales Propriétés structurales et spectroscopiques fondamentales de systèmes hybrides à base de nanotubes et de molécules photoactives en fonction de leur topologie d'organisation

Principales Collaborations Internationales

Laboratoire	Institution	Pays	Thème de la collaboration
GeorgiaTech	University System of Georgia	Atlanta, USA	Hétérostructures BN-epigraphene-SiC
Department of Physics and Materials Science	U. Luxembourg	Luxembourg	2) Modélisations et simulations ab initio des propriétés excitoniques et de phonons du hBN massif et 2D
Department of Mechanical Engineering	U. Tokyo	Tokyo, Japan	Mécanismes de croissance des nanotubes de carbone, ingénierie des catalyseurs
Aalto U.	Aalto U.	Aalto (Helsinki), Finlande	Mécanismes de croissance des nanotubes de carbone, ingénierie des catalyseurs, applications stockage de l'énergie
U. Montréal	U. Montréal	Montréal, Canada	Propriétés fondamentales du phosphore noir