

ISMO

Présentation du laboratoire

Nom du Laboratoire	Institut des Sciences Moléculaires d'Orsay
Acronyme	ISMO
Adresse	Rue André Rivière, Bâtiment 520, 91405 Orsay
Site web	http://www.ismo.universite-paris-saclay.fr
Tutelles	CNRS – Université Paris-Saclay
Graduate School(s) de rattachement	Physique et Chimie
Autres Ol d'intérêt	IA2, AllCan, Sustainable Energy
Directeur du laboratoire	Thomas PINO
Email	direction.ismo@universite-paris-saclay.fr
Téléphone	01 69 15 73 19

Personne contact du laboratoire pour PSiNano

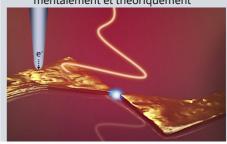
Nom	Prénom	Fonction	Email	Téléphone
BOER-DUCHEMIN	Elizabeth	MC	Elizabeth.boer-duchemin@universite-paris-saclay.fr	01 69 15 73 52

Présentation des équipes de recherche Équipe 1

Nom de l'équipe	Nanophysique et Surfaces
Site Web de l'équipe	http://www.ismo.universite-paris-saclay.fr/spip.php?rubrique455
Nombre de personnels	10 permanents, 5 doctorants

Liste des permanents de l'équipe

- sto des permanents de l'equipe					
Nom	Prénom	Fonction	Email	Téléphone	
Boer-Duchemin	Elizabeth	EC	elizabeth.boer-duchemin@universite-paris-saclay.fr	01 69 15 73 52	
Borissov	Andrei	C	andrei.borissov@universite-paris-saclay.fr	01 69 15 76 97	
Carrez	Serge	EC	serge.carrez@universite-paris-saclay.fr	01 69 15 82 62	
Khemliche	Hocine	C	hocine.khemliche@universite-paris-saclay.fr	01 69 15 75 49	
Le Moal	Eric	C	eric.le-moal@universite-paris-saclay.fr	01 69 15 66 97	
Le Moal	Séverine	EC	severine.le-moal@universite-paris-saclay.fr	01 69 15 66 51	
Marinica	Codruta	EC	dana-codruta.marinica@universite-paris-saclay.fr	01 69 15 76 84	
Momeni	Anouchah	EC	anouchah.momeni@universite-paris-saclay.fr	01 69 15 75 49	
Ouvrard	Aimeric	C	aimeric.ouvrard@universite-paris-saclay.fr	01 69 15 38 87	
Staicu Ca- sagrande	Elena Magda- lena	EC	elena-mag dalena. staicu-casa grande @universite-paris-saclay. fr	01 69 15 76 74	

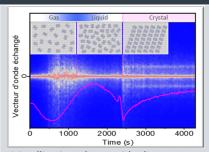

Activités de recherche

Nano-optique (expérience et théorie)

L'activité expérimentale en Nano-optique à l'ISMO se distingue par son utilisation des électrons tunnel pour l'excitation locale et électrique des plasmons de surface et des excitons. Ces jonctions tunnel peuvent être celles qui se trouvent entre la pointe d'un microscope à effet tunnel et l'échantillon, ou celles qui sont intégrée dans l'échantillon. Le choix des systèmes étudiés inclut des nanoparticules métalliques, des matériaux 2D, et des couches moléculaires.

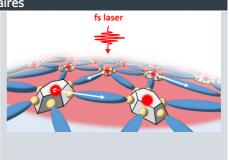
L'activité théorique explore entre autres la plasmonique dans les rubans de graphène et l'émission électronique par champ optique dans les gaps plasmoniques irradiés par des impulsions courtes. Elle sert également d'appui à l'activité expérimentale de l'équipe/

Une antenne « nœud de papillon » peut être excitée par les électrons tunnel ou une impulsion femtoseconde, et étudiée expérimentalement et théoriquement



Couches minces et nanostructures

L'activité porte sur l'élaboration de couches moléculaires ou de nanostructures sur des substrats cristallins. L'objectif est de mieux décrire et comprendre les mécanismes d'organisations à l'échelle nanométrique, la nature de l'interaction avec le substrat et l'influence de la morphologie (structure cristalline, extension de l'ordre, densité de défauts, mosaïcité, etc.) sur les propriétés électronique et optique des objets déposés (molécules organiques, nanoparticules de type cœur-coquille, pérovskites hybrides ou matériaux 2D).


Les méthodes de caractérisations incluent la diffraction d'atomes rapides ou la spectroscopie de réflectivité différentielle (opérées en temps réel pendant la croissance), les outils de microscopie locale (STM, AFM), la Génération de Fréquence Somme et la diffraction d'électrons.

Cristallisation ultra-rapide d'une monocouche organique révélée par GIFAD

Nano-assemblages hybrides de nanoparticules et de ponts moléculaires

Nous nous intéressons à des assemblages hybrides très ordonnés où des molécules organiques fonctionnalisent ou établissent un pont entre des nanoparticules métalliques ou des boîtes quantiques semi-conductrices ordonnées sur une couche ultra-mince d'alumine nanostructurée. Ce système modèle nous permettra d'appréhender par l'emploi de techniques de spectroscopie laser ultra-rapide et de microscopie à sonde locale, les transferts de charge et d'énergie à l'échelle nanométrique et d'identifier des assemblages inorganiques-organiques propices à un comportement fonctionnel. Réseaux nanométriques ordonnés de nanoparticules et de molécules sous excitation laser ultra-brève pour mettre en évidence les transferts de charge à travers le pont moléculaire

Lien Recherche- Formation

E. Boer-Duchemin pourrait participer dans les formations suivantes : STM, AFM, plasmonique

Collaborations sur le plateau de Saclay

Laboratoire	UPS/IPP/Ind	Thème de la collaboration
Laboratoire de Physique des Solides	UPS	Nano-optique avec des électrons
Laboratoire LuMIn	UPS	Nanomatériaux carbonés, Pérovskites hybrides
LEPO (SPEC / IRAMIS)	CEA	Systèmes hybrides plasmon-exciton
LEDNA (NIMBE / IRAMIS)	CEA	Nanoparticules plasmoniques
Laboratoire Charles Fabry (IOGS)	UPS	Excitation des plasmons par jonction tunnel
C2N	UPS	Excitation des plasmons par jonction tunnel
Laboratoire des Solides Irradiés	IPP	Emission par champ optique

Principales Collaborations nationales

Laboratoire	Institution	Pays	Thème de la collaboration			
IPCMS	CNRS - Uni. Strasbourg	France	Luminescence induite par STM			
INSP	CNRS-Sorbonne Université	France	Spectroscopie de réflectivité différentielle			
Institut Néel	CNRS	France	Nano-assemblages hybrides			

Principales Collaborations Internationales

· ····································					
Laboratoire	Institution	Pays	Thème de la collaboration		
Institut de Chimie Physique et Théorique	Université de Bonn	Allemagne	Couches minces organiques		
CFM, DIPC	CSIC UPV/EHU, DIPC	Espagne	Emission par champ optique, plasmo- nique théorique		
PHYMS	University of Luxembourg	Luxembourg	Emission par champ optique		
CAB	CNEA	Argentine	Matériaux 2D		
Dept of Physics	Chinese Universtiy of Hong Kong	Hong Kong	Nanoparticules plasmoniques chirales		

Équipe 2

Nom de l'équipe	Surfaces, Interfaces, Molecules & 2D Materials (SIM2D)		
Site Web de l'équipe	http://www.ismo.universite-paris-saclay.fr/spip.php?rubrique30⟨=fr		
Nombre de personnels	13 permanents, 4 doctorants		

Liste des permanents de l'équipe

Nom	Prénom	Fonction	Email	Téléphone
Amiaud	Lionel	EC	Lionel.amiaud@universite-paris-saclay.fr	01 69 15 38 87
Bobrov	Kirill	C	Kirill.bobrov@universite-paris-saclay.fr	01 69 15 75 14
Dablemont	Céline	EC	Celine.dablemont@universite-paris-saclay.fr	01 69 15 32 14
Enriquez	Hannah	EC	Hanna.enriquez@universite-paris-saclay.fr	01 69 15 73 79
Guillemot	Laurent	C	Laurent.guillemot@universite-paris-saclay.fr	01 69 15 76 62
Fortuna	Franck	IR	Franck.fortuna@universite-paris-saclay.fr	01 69 15 52 06
Frantzeskakis	Emmanouil	EC	Emmanouil.frantzeskakis@universite-paris-saclay.fr	01 69 15 76 82
Lafosse	Anne	EC	Anne.lafosse@universite-paris-saclay.fr	01 69 15 76 98
Mayne	Andrew	C	Andrew.mayne@universite-paris-saclay.fr	01 69 15 75 02
Nave	Sven	EC	Sven.nave@universite-paris-saclay.fr	01 69 15 36 20
Oughaddou	Hamid	EC	Hamid.oughaddou@universite-paris-saclay.fr	01 69 15 32 65
Roncin	Philippe	С	Philippe.roncin@universite-paris-saclay.fr	01 69 15 65 68
Sanander-Syro	Andrés	EC	Andres.santander-syro@universite-paris-saclay.fr	01 69 15 75 11

Activités de recherche

Chemistry of molecular layers

The chemical composition of molecular layers on surfaces can be analysed and specific chemical interactions can be induced by low-energy electron beams. The controlled formation and nano-structuring of organic molecular layers on surfaces is one important aspect to be considered. The different molecular species present, the mechanisms involved, and the efficiency of the chemical processes are probed by the electron or photon-based techniques of HREELS and FTIR, while STM and XPS/UPS probe the molecular layer and substrate morphologies at the micro-nanoscale. DFT calculations provide information on the dynamics of the molecule-substrate interactions.

Electronic, magnetic & optical properties of 2D materials and nano-structured surfaces.

The reduced dimensionality of 2D materials reveals new electronic, magnetic and optical properties. These properties have been studied first in graphene, and more recently in the new 2D materials of silicene, phosphorene, bismuthene and transition-metal tellurides. Their electronic properties at the atomic scale are studied using STM, electron spectroscopies (XPS, ARPES), and grazing incidence fast atom diffraction (GIFAD). With a resolution normal to the surface of just 10 pm, GIFAD is sensitive to both the long-range structural order and the role of vibrational excitations.

Electronic properties of functional quantum materials.

Systems with strongly interacting electrons present competing quantum ground states from which a rich variety of remarkable macroscopic properties emerge. Many of these materials are challenging from a fundamental standpoint, while their functionalities are promising for applications. Their quantum electronic structure is studied with angle-resolved photoemission spectroscopy (ARPES), while STM and GIFAD provide information on the surface order and electronic structures.

Collaborations sur le plateau de Saclay

•	•	
Laboratoire	UPS/IPP/Ind	Thème de la collaboration
C2N	UPS	Quantum Materials, thin films
LPS	UPS	DMFT calcs + Magnetic measurements
CPhT	IPP	DMFT calculations
SOLEIL	UPS	XPS, ARPES
SPEC	UPS/CEA	DFT calculations

Principales Collaborations nationales

Laboratoire	Institution	Pays	Thème de la collaboration
MPQ	Paris Diderot	FR	Molecules on 2D materials
NEEL	INEEL	FR	Electron transport

CRISMAT	Caen	FR	Synthesis superconductors
Lerma	Sorbonne	FR	Molecular ices

Principales Collaborations Internationales

Laboratoire	Institution	Pays	Thème de la collaboration	
DIPC	San Sebastien	Spain	Quantum Materials, ARPES	
ISSP	U Hiroshima	Japan	Quantum Materials, ARPES	
MagLab	Florida State U	USA	Quantum Materials, samples	
LaMCScl	UMV	Morocco	2D materials	
Dept. Physics	U Central Florida	USA	DFT 2D materials	

Équipe 3

N. 1. 1/2	
Nom de l'équipe	Systemae
Site Web de l'équipe	http://www.ismo.universite-paris-saclay.fr/spip.php?rubrique28
Nombre de personnels	3 permanents, 3 doctorants

Liste des permanents de l'équipe

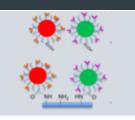
Nom	Prénom	Fonction	Email	Téléphone
Méallet-Renault	Rachel	EC	rachel.meallet-renault@universite-paris-saclay.fr	01 69 15 31 28
Steenkeste	Karine	EC	karine.steenkeste@universite-paris-saclay.fr	01 69 15 73 64
Ha-Thi	Minh Huong	EC	minh-huong.ha-thi@universite-paris-saclay.fr	01 69 15 38 86

Activités de recherche :

Titre activité de recherche:

Décrire l'activité de recherche (maximum 700 caractères)

Caractérisations photophysiques de nouvelles NP pour l'imagerie photoacoustique et la délivrance de médicaments (spectroscopies stationnaires et résolues en temps, microscopies optiques).


A) Spectres d'absorption du chromophore parent (rouge), du PolyLacticAcid-chromophore (bleu) et des NPs correspondantes (vert). B) Image TEM des NP marquées (C) PhotoAcoustique (rouge) et spectres d'absorption optique (vert) des NP marquées.

Titre activité de recherche :

Décrire l'activité de recherche (maximum 700 caractères)

Elaboration et caractérisation de nanoparticules luminescentes pour la détection de pathogènes.Immobilisation sur des surfaces pour l'élaboration de micro-puces.

nanoparticules luminescentes bi-fonctionnelles (par ex. sensibles au pH et à un cation métallique) pouvant émettre une fluorescence verte ou rouge. Greffage de NP sur une surface en verre

