ULTRACOLD ATOMS IN OPTICAL CAVITIES

Giulia Del Pace

Università degli Studi di Firenze, EPFL Lausanne

11/05/2023

Quantum NEST - Trieste

OUTLINE OF THIS LECTURE

Overview of optical cavities ×

Strong light-matter coupling: collective effect of many atoms in a cavity ×

Cavity-mediated long-range interactions *

OPTICAL CAVITIES

Frequency of the EM field inside the cavity

After a roundtrip, the light should have acquired a phase of 2π (or an integer multiple), so to have constructive interference

$$\lambda = 2L \times p \quad \rightarrow \quad p \in \mathbb{N}$$

Longitudinal modes

Modes of the EM field inside the cavity 2 Solve the Helmholtz equation: $\nabla^2 \mathbf{E}(\mathbf{r}) + k \mathbf{E}(\mathbf{r}) = 0$ $k = 2\pi/\lambda \rightarrow$ wavevector

OPTICAL CAVITY SPECTRUM

OPTICAL CAVITY SPECTRUM

 $\nu_{FSR} = c/2L \rightarrow$ Free Spectral Range $\nu_{TEM} = c/2\pi L \arccos(1 - L/R_c) \rightarrow$ Transverse mode spacing $R_c \rightarrow$ curvature radius of the mirrors

WHY OPTICAL CAVITIES ARE INTERESTING?

Inside an optical cavity exist a highly monochromatic EM field at high power.

$$\frac{P_c}{P_{in}} = \frac{4}{\pi} \mathcal{F}$$

 $\mathscr{F} = \frac{\nu_{FSR}}{2 \,\delta \nu} \sim 10^3 - 10^4 \rightarrow \text{Finesse of the cavity}$

Strong light-matter interactions

The cavity modifies the density of states of the atoms, affecting both the absorption/emission and the scattering properties, even when no photons populate the cavity mode.

Cavity-mediated long-range interactions

SINGLE ATOM IN AN OPTICAL CAVITY

Cavity Atom $\mathcal{H} = \frac{\hbar\omega_c a^{\dagger}a}{\hbar\omega_c a^{\dagger}a} + \frac{\hbar\omega_A}{\hbar\omega_A} |e\rangle < e| +$

Strong coupling = big
$$\Omega$$
: $|e, n > -$
Dressed states: hybrid states of

atom and photons

|g, n + 1 > ---

$$E_g = \hbar \omega_A \rightarrow \text{atomic resonance frequency}$$

 $\frac{2|d_{ge}||E|}{\hbar} \rightarrow \text{Rabi frequency of the coupling}$

 \rightarrow annihilation/creation operators of photons

Interactions

$$\hbar\Omega\left(\left|e > < g\right| + \left|g > < e\right|\right)\left(a^{\dagger} + a\right)$$

MANY ATOMS IN AN OPTICAL CAVITY

$$\mathcal{H} = \hbar \omega_c a^{\dagger} a + \frac{\hbar \omega_A}{2} J_z + \frac{\hbar \Omega}{2} \left(J_+ + J_- \right) \left(a^{\dagger} + a \right)$$

N atoms of two levels $|g\rangle$ and $|e\rangle$

- $\omega_c \rightarrow \text{cavity frequency}$
- $\omega_A \rightarrow$ atom resonance frequency
- $a, a^{\dagger} \rightarrow \text{annihilation/creation operators of photons}$

Interactions

$$-\hbar\Omega \sum_{i} \left(\left| e \right>_{i} < g \right|_{i} + \left| g \right>_{i} < e \right|_{i} \right) \left(a^{\dagger} + a \right)$$

$$J_{k} = \sum_{i} \sigma_{k}^{(i)} \rightarrow \text{Collective operators}$$

$$\sigma_{k}^{(i)} \rightarrow \text{Pauli matrices of single atoms}$$

MANY ATOMS IN AN OPTICAL CAVITY

$$\mathcal{H} = \hbar \omega_c a^{\dagger} a + \frac{\hbar \omega_A}{2} J_z + \frac{\hbar \Omega}{2} \left(J_+ + J_- \right) \left(a^{\dagger} + a \right)$$

The collective operators form an **angular momentum algebra** with $J^2 = \frac{3}{4}N$

$$[J_k, J_l] = i \epsilon_{klm} J_m \quad , \quad [J^2, J_k] = 0$$

$$\{ |j,m\rangle \} \rightarrow \text{Dicke states} \qquad J^2 |j,m\rangle = j(j + j)$$

$$j = N/2 \qquad \longrightarrow \qquad J_z |j,m\rangle = m |j,m\rangle$$

$$m = -N/2, \dots, N/2 \qquad \qquad J_{\pm} |j,m\rangle \sim |j,m\rangle$$

They are eigenstates of the non-interacting Hamiltonian

Ground state: |N/2, -N/2 > = |g, g, ..., g >1st excited: $|N/2, -N/2 + 1 > = \sum_{i} |g, g, e_i, ..., g >$

, g > Entangled states!

MANY ATOMS IN AN OPTICAL CAVITY

$$\mathcal{H} = \hbar \omega_c a^{\dagger} a + \frac{\hbar \omega_A}{2} J_z + \frac{\hbar \Omega}{2} \left(J_+ + J_- \right) \left(a^{\dagger} + a \right)$$

 $< b^{\dagger}b > \ll 1$

Holstein-Primakoff transformation

$$J_z = b^{\dagger}b - j$$
$$J_+ = \sqrt{2j}b^{\dagger}\sqrt{1 - \frac{b^{\dagger}b}{2j}}$$

 \rightarrow bosonic annihilation/creation operators b, b^{\dagger}

$$\mathscr{H} = \hbar \omega_c a^{\dagger} a + \frac{\hbar \omega_A}{2} b^{\dagger} b + \sqrt{2j} \frac{\hbar \Omega}{2} \left(b^{\dagger} + b \right) \left(a^{\dagger} + b \right)$$

The eigenstates of the Hamiltonian are hybrid states of atoms and photons:

POLARITONS

 $c_{\pm} = \alpha a \pm \beta b$

HOW TO PROBE THE POLARITIES: CAVITY TRANSMISSION SPECTROSCOPY

HOW TO PROBE THE POLARITIES: CAVITY TRANSMISSION SPECTROSCOPY

Dispersive regime: $\Delta = \omega_c - \omega_A$ is big

The light traveling in the cavity sees an effective length affected by the presence of the atoms. The cavity resonance moves by the dispersive shift:

$$\delta_c = \Omega N/2$$

Cavity transmission spectroscopy provides a **weakly** destructive measurement of the number of atoms

HOW TO PROBE THE POLARITIES: CAVITY TRANSMISSION SPECTROSCOPY

Resonant regime: $\Delta = \omega_c - \omega_A$ is small

The light traveling in the cavity is strongly-coupled with the atoms: polaritons. The cavity resonance moves by the polariton energy:

$$\Delta E \sim \Omega \sqrt{N}$$

CAVITY TRANSMISSION SPECTROSCOPY ON ULTRACOLD FERMIONS

Feature	671 nm	532/1064 nm
Linewidth	77 kHz	1.4 MHz
Finesse	47 000	2 800
Mode waist	45 um	50 um

 $N \sim 10^5$ at T ~ 30 nK

CAVITY TRANSMISSION SPECTROSCOPY ON ULTRACOLD FERMIONS

Feature	671 nm	532/1064 nm
Linewidth	77 kHz	1.4 MHz
Finesse	47 000	2 800
Mode waist	45 um	50 um

K. Roux, et al., New Journal of Physics 23.4 (2021): 043029.

Dispersive regime: non-destructive measurements of the lifetime

CAVITY TRANSMISSION SPECTROSCOPY ON ULTRACOLD FERMIONS

Probe

 $\nu(t)$

Photo-association (PA) transition

A photon is absorbed by a pair of atoms that are lifted to a **highly excited molecular state**

Review on PA spectroscopy: K. M. Jones, et al., Rev. Mod. Phys. 78, 483–535 (2006).

Int regime: Strong light-matter coupling.

H. Konishi, et al., *Nature* 596, 509–513 (2021).

CAVITY MEDIATED LONG-RANGE INTERACTIONS

Two atoms in the cavity can **coherently exchange a photon**, that mediates an effective interaction between them. Such interaction between atoms:

- is a **long-range interaction**: any two atoms in the cavity volume can exchange cavity photons
- has a strength proportional to the number of photons in the cavity
- induces the **self-organization** phase transition

Self-organization phase transition

For red-detuned light with respect to the atomic transition:

- The light forms a standing wave inside the cavity
- The light exert an attractive potential to the atomic sample
- The atoms form a crystal, once driven by an external pump

SELF-ORGANIZATION PHASE TRANSITION

SELF-ORGANIZATION OF ULTRACOLD FERMIONS

Contact interaction

V. Helson et al., arXiv:2212.04402

SELF-ORGANIZATION CLOSE TO A PA TRANSITION

The critical pump strength for self organization changes in proximity of the PA line

PA AS OPTICAL FESHBACH RESONANCES

D. Bauer, et al., *Nature Physics* 5.5 (2009): 339-342.

PA AS OPTICAL FESHBACH RESONANCES

D. Bauer, et al., Nature Physics 5.5 (2009): 339-342.

The laser that couples |g > to |e > shifts the position of |g >creating a **dressed state** with an energy shift $\sim \Omega^2 \sim I$

Tuning the intensity of the laser we can tune the relative |g > - |a > energy shift, changing the effective location in B field of the magnetic Feshbach resonance

PA AS OPTICAL FESHBACH RESONANCES

The laser that couples $|g\rangle$ to $|e\rangle$ shifts the position of $|g\rangle$

|g > - |a > energy shift, changing the effective location in B field of

CONCLUSIONS

Ultracold atoms coupled to optical cavities

LQG GROUP @ EPFL

Prof. J.P. Brantut

Fermi gas lab

- V. Helson
- T. Zwettler
- GDP
- T. Bühler

Microscope lab

- N. Sauerwein
- F. Orsi
- J. Faltinath

R. Bhatt

G. Bolognini

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

THANK YOU FOR YOUR ATTENTION!