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Skyrmionic cocoons in magnetic multilayers
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In aperiodic magnetic multilayers, we report the existence and characterization of skyrmionic cocoons, a novel 3D topological 3 Helmholtz-Zentrum Berlin, 14109 Berlin, Germany
magnetic textures with a typical ellipsoid shape, which only extends along a fraction of the total thickness. Their vertical
confinement can be controlled by optimizing the multilayer architecture or with an external magnetic field. Interestingly, they
can coexist with more usual magnetic texture, like columnar skyrmions, which is an important asset for potential applications.
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A Towards 3D objects [J§ Controlling the vertical confinement
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|¥  Electronic transport

Magneto-transport measurements in a DG structure
(X, =2.0nm, N =13,a =0.1nm, M = 15).

» Magnetic Force Microscopy (MFM) to probe the stray field. Correlation with micromagnetic simulations. > Probe the averaged magnetic properties <
Field sweep a
. . . . .. . while sweeping the magnetic field. 13.48 “'L"c\ ,EJL
»> Different contrasts: textures extending over the full thickness (bright red) & skyrmionic cocoons (white dots). PINg 8 ong, 2 perr
..._;Ji:‘\::__
STy T ‘ — . . » Multiple contributions to the resistance: 13.46 Vi E
/Te N . . y A%
2 | lx”? e Spin Hall magnetoresistance (SMR) _ ﬁé" 1Y
S , { 1. Q
3 (j,\ v 3 3 e Anisotropic magnetoresistance (AMR) C 1344 - - 206 | of AL 5020 >
) 4 3 3 - 0 ° 0
£ Jf Q 2 2 e Anomalous Hall Effect (AHE) Q:§ h
S A E 5 3
LEL 0 2 2 13.42 a8 AAAAAAA
Ryx = Rxx + Rsyr my + Rayr my
ny = Ra(gy + Rypgp My 13.40 . Eiﬁ o glﬂ
A Exp A Sim
¢ Exp © Sim
» Measurements at different external field T I N S
angles (0) to probe the influence of in- 600 -450 300 -150 0 150 300 450 600

Red: m, = —0.8 plane components.
White:m, =0
Bluem, =1 1.0

» Display an excellent agreement with
micromagnetic simulations (open symbols)
which support the existence of skyrmionic
cocoons.

Relaxed numerical states

» Easily implementable measurements to
detect 3D magnetic textures.
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skyrmionic cocoons along with textures
extending over the full thickness (C+W).

» Typical resolution defined by the reference holes size (typically 30nm) and the numerical aperture of the
setup. Phase Retrieval process used to improve the contrast and resolution.

» Evidence of various 3D objects (different contrasts) and magnetic phase transitions (coloured ellipses).

Field dependency of the real-space reconstruction for a DG multilayer (X; = 2.0 nm, N = 13, a = 0.1 nm, M = 15) with a 800 nm object hole
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[¢] Summary

» Stabilized skyrmionic cocoons, a novel 3D topological magnetic texture with an ellipsoidal shape, able to
coexist with columnar skyrmions and whose vertical confinement can be controlled by various means.
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» Their existence is supported by very different measurements (MFM, magneto-transport, holography, XRMS)
correlated with micromagnetic simulations.
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» X-Ray laminography experiment have also been performed to reconstruct experimentally the 3D
magnetization, confirming the existence of magnetic textures displaying a limited vertical extension.
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» Next studies: topological phase transitions, current-induced dynamics...
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