

Laboratoire de Physique des 2 Infinis

A2C Astroparticles, Astrophysics & Cosmology

Studying the Hubble tension with the CMB

Adrien La Posta IJClab supervised by Thibaut Louis

laposta@ijclab.in2p3.fr

The standard model of cosmology – ΛCDM model

CMB temperature as measured by the Planck satellite

How to do cosmology from the CMB ?

How to do cosmology from the CMB ?

Measuring the statistical properties of the CMB

Spherical harmonics

$$\langle a_{\ell m}^T a_{\ell' m'}^{T*} \rangle = \delta_{\ell \ell'} \delta_{m m'} C_{\ell}^{TT}$$

How to do cosmology from the CMB ?

CMB standard ruler : size of the sound horizon at **decoupling** imprinted in the CMB radiation z ~ 1100

$$H_{\text{early}}^2(z) = \frac{3\pi G}{3} \left[\rho_r^0 (1+z)^4 + (\rho_b^0 + \rho_c^0) (1+z)^3 \right]$$

Now \mathcal{D}^*_A is known $heta_* = rac{r^*_s}{\mathcal{D}^*_A}$

$$H_0^2 = \frac{8\pi G}{3} \left[\rho_b^0 + \rho_c^0 + \rho_\Lambda \right]$$

Measurement from Planck data ...

$$\delta T^{\text{obs}}(\hat{n}) = \mathcal{I}_T * \delta T^{\text{sky}}(\hat{n})$$
$$E^{\text{obs}}(\hat{n}) = \mathcal{I}_E * E^{\text{sky}}(\hat{n})$$

• Finite angular resolution (beams)

$$\mathcal{I}_T = \mathcal{F}_{\mathcal{T}} * c * B_T$$

$$\mathcal{I}_E = \mathcal{F}_E * c * c_E * B_E$$

$$\delta T^{\text{obs}}(\hat{n}) = \mathcal{I}_T * \delta T^{\text{sky}}(\hat{n})$$
$$E^{\text{obs}}(\hat{n}) = \mathcal{I}_E * E^{\text{sky}}(\hat{n})$$

- Finite angular resolution (beams)
- Calibration

$$\mathcal{I}_{T} = \mathcal{F}_{\mathcal{T}} \ast c \ast B_{T}$$
$$\mathcal{I}_{E} = \mathcal{F}_{E} \ast c \ast c_{E} \ast B_{E}$$
Calibration

$$\delta T^{\text{obs}}(\hat{n}) = \mathcal{I}_T * \delta T^{\text{sky}}(\hat{n})$$
$$E^{\text{obs}}(\hat{n}) = \mathcal{I}_E * E^{\text{sky}}(\hat{n})$$

- Finite angular resolution (beams)
- Calibration
- Polarization efficiency

$$\mathcal{I}_T = \mathcal{F}_{\mathcal{T}} * c * B_T$$
$$\mathcal{I}_E = \mathcal{F}_E * c * c_E * B_E$$

Polarization efficiency

$$\delta T^{\text{obs}}(\hat{n}) = \mathcal{I}_T * \delta T^{\text{sky}}(\hat{n})$$
$$E^{\text{obs}}(\hat{n}) = \mathcal{I}_E * E^{\text{sky}}(\hat{n})$$

- Finite angular resolution (beams)
- Calibration
- Polarization efficiency
- Transfer functions (map-making)

$$\mathcal{I}_T = \mathcal{F}_T * c * B_T$$
$$\mathcal{I}_E = \mathcal{F}_E * c * c_E * B_E$$

Transfer functions

$$\delta T^{\text{obs}}(\hat{n}) = \mathcal{I}_T * \delta T^{\text{sky}}(\hat{n})$$
$$E^{\text{obs}}(\hat{n}) = \mathcal{I}_E * E^{\text{sky}}(\hat{n})$$

- Finite angular resolution (beams)
- Calibration
- Polarization efficiency
- Transfer functions (map-making)

These instrumental effects are multiplicative in harmonic space

$$C_{\ell}^{TT,\text{obs}} = (\mathcal{F}_{\ell}^{T})^{2} c^{2} (B_{\ell}^{T})^{2} C_{\ell}^{TT}$$
$$C_{\ell}^{EE,\text{obs}} = (\mathcal{F}_{\ell}^{E})^{2} c^{2} c_{E}^{2} (B_{\ell}^{E})^{2} C_{\ell}^{EE}$$
$$C_{\ell}^{TE,\text{obs}} = \mathcal{F}_{\ell}^{T} \mathcal{F}_{\ell}^{E} c^{2} c_{E} B_{\ell}^{T} B_{\ell}^{E} C_{\ell}^{EE}$$

Correlation coefficient between T and E

$$\mathcal{R}_{\ell}^{TE} = \frac{\left\langle a_{\ell m}^{T} a_{\ell m}^{E*} \right\rangle}{\sqrt{\left\langle a_{\ell m}^{T} a_{\ell m}^{T*} \right\rangle \left\langle a_{\ell m}^{E} a_{\ell m}^{E*} \right\rangle}} = \frac{C_{\ell}^{TE}}{\sqrt{C_{\ell}^{TT} C_{\ell}^{EE}}}$$

$$\mathcal{R}_{\ell}^{TE,\text{obs}} = \frac{\mathcal{F}_{\ell}^{T} \mathcal{F}_{\ell}^{E} c^{2} c_{E} B_{\ell}^{T} B_{\ell}^{E} C_{\ell}^{TE}}{\sqrt{(\mathcal{F}_{\ell}^{T})^{2} c^{2} (B_{\ell}^{T})^{2} C_{\ell}^{TT} \times (\mathcal{F}_{\ell}^{E})^{2} c^{2} c_{E}^{2} (B_{\ell}^{E})^{2} C_{\ell}^{EE}}}$$

Correlation coefficient between T and E

$$\mathcal{R}_{\ell}^{TE} = \frac{\left\langle a_{\ell m}^{T} a_{\ell m}^{E*} \right\rangle}{\sqrt{\left\langle a_{\ell m}^{T} a_{\ell m}^{T*} \right\rangle \left\langle a_{\ell m}^{E} a_{\ell m}^{E*} \right\rangle}} = \frac{C_{\ell}^{TE}}{\sqrt{C_{\ell}^{TT} C_{\ell}^{EE}}}$$

Planck correlation coefficient

La Posta+ 2021 [Phys. Rev. D 104, 023527]

Back to the Hubble tension

... with additional constraints from the CMB

Early-time modification to ΛCDM

Motivation : higher H_0 value \Rightarrow lower D_A

Early-time modification to ΛCDM

Motivation : higher H_0 value \Rightarrow lower D_A

$$\theta_* = \frac{r_s^*}{D_A^*} \longrightarrow \text{ Decrease } r_s^* = \int_{z^*}^{\infty} \frac{dz}{H(z)} c_s(z)$$

$$\frac{\frac{1}{3H_{\text{early}}^2(z)}}{\frac{3H_{\text{early}}^2(z)}{8\pi G}} = \rho_r(z) + \rho_m(z)$$

Proposed solution : Early Dark Energy

Motivation : higher H_0 value \Rightarrow lower D_A

$$\theta_* = \frac{r_s^*}{D_A^*} \longrightarrow \text{ Decrease } r_s^* = \int_{z^*}^{\infty} \frac{dz}{H(z)} c_s(z)$$

$$\frac{3H_{\text{early}}^2(z)}{8\pi G} = \rho_r(z) + \rho_m(z) + \rho_{\text{EDE}}(z)$$

Background evolution :
$$\ddot{\phi} + 3H\dot{\phi} + V'(\phi) = 0$$
 axion-like potential $V(\phi) = m^2 f^2 \left[1 - \cos\left(\frac{\phi}{f}\right)\right]^3$

Poulin+19, Smith+19

Proposed solution : Early Dark Energy

$$\ddot{\phi} + 3H\dot{\phi} + V'(\phi) = 0$$

The field is initially frozen due to Hubble friction (H >> m)

acts as dark energy (w= - 1)

Proposed solution : Early Dark Energy

Summary

Hill+20, Hill+21, La Posta+22

e are currently analyzing high-precision data from ACT that will help to constrain extensions to LCDM

Planck correlation coefficient

La Posta+ 2021 [Phys. Rev. D 104, 023527]

Constraints on EDE from Planck

Constraints on EDE from Planck

Constraints on EDE from ACT DR4

Constraints on EDE from ACT DR4

Constraints on EDE from SPT-3G

La Posta+ 2021 [arXiv:2112.10754]