

Réduction des émissions de gaz à effet de serre et de polluants grâce à la combustion assistée par plasma

Christophe Laux Laboratoire EM2C, CNRS, CentraleSupélec, Université Paris Saclay

Inauguration - Paris Saclay Institute of Aeronautics and Astronautics 14 avril 2022

Enjeux de la transition énergétique dans l'aviation

Aviation : 2% des émissions de CO₂ mondiales ~1 Gt CO2eq/an

Objectif Europe 2050 : réduire CO₂ de 75% et NOx de 90% Darecki et al. (2011). Flightpath 2050 Europe's Vision for Aviation. European Commission.

Stratégies de réduction du CO₂

Sustainable Aviation Fuel (SAF) : carburants issus de plantes halophytes, huiles de cuisson, déchets municipaux, ...

Neutre en CO₂

Hydrogène

CentraleSupéle

Pas de CO2 émis

 $H_2 + \frac{1}{2} (O_2 + 3,76 N_2) => H_2O + 1,88 N_2$

H₂ et SAF dans les scénarios 2050 pour l'aviation

Mais il reste la question des polluants

Les SAF et l'hydrogène produisent des NOx par réactions thermiques

Pour réduire les NOx => réduire la température des flammes en utilisant des mélanges pauvres en carburant

Cependant les flammes pauvres en carburant sont instables

 \Rightarrow Solution envisagée : stabiliser les flammes pauvres avec un plasma

Quel type de plasma utiliser ?

Programme « Air Ramparts » AFOSR 1997-2002

RUSSIAN AJAX HYPERSONIC FLIGHT VEHICLE (1994)

univer

CentraleSupélec

TECHNICAL CHALLENGES

- Uniform Plasma Generation
- Power Required; System Impact
- High Re, Q Environment
- Measurement/Modeling

PAYOFFS

- Drag Reduction
- Thermal Management
- Flight Control
- Size, Weight reduction
- Few Moving Parts
- Power generation
- Ignition/Combustion Enhancement

Problème :

1 m³ de plasma d'air = 27 GW avec les plasmas classiques (DC, radio-fréquences, micro-ondes)

Programme « Air Ramparts » :

- Réduire la puissance d'un facteur 1000
- West Coast vs East Coast

Reduction d'un facteur 1000 grâce à des plasmas NRP

Nanosecond Repetitively Pulsed (NRP) Discharges

=> 1000 fois moins de puissance que plasmas classiques

Application des décharges NRP à la stabilisation

Brûleur Mini-PAC (EM2C)

Phénomènes induits par les pulses

uS

Mini-PAC

Simulations numériques du foyer MiniPAC

Modèle de décharges NRP:

- La décharge est un cylindre de 500-µm de diametre
- 20% de l'énergie dans le chauffage ultrarapide
- 35% dans la dissociation ultrarapide de O₂
- 45% dans le chauffage lent
- Ref: Castela, Fiorina, Coussement, Gicquel, Darabiha, Laux, Comb. & Flame, 2016

Simulations avec AVBP:

- Modèle de décharges NRP
- Méthane-air
- LES avec modèle de turbulence
- Cinétique détaillée de la chimie CH₄-air
- Ref: Bechane and Fiorina, Comb. Symp. 2020

Stabilisation de flammes pauvres par décharges NRP

Reference	Burner type	Fuel	Pressure	Flame power (P _{flame})	Plasma power (P _{plasma})	P _{plasma} / P _{flame}	Pulse rate	Extension of LBO (change of φ)	Pilla 2471 Phan
Pilla 2006 (Mini-PAC)	Bluff-body	Propane	1 bar	11 kW	70 W	0.6%	30 kHz	~10%	39 (11
Pham 2011 (Mini-PAC)	Bluff-body	Methane	1 bar	11 kW	70 W	0.6%	30 kHz	~10%	Barb <i>A</i> , 3 7
Barbosa 2015	Swirled	Propane	1 bar	52 kW	350 W	0.7%	30 kHz	0.47→0.11	Heid conf
Heid 2009	Swirled	Kerosene	3 bar	50 kW	< 500W	< 1%	30 kHz	0.44→0.21	Di Sa
DiSabatino 2020	Swirled	Methane	1 bar	4.5 kW	31 W	0.7%	30 kHz	~5%	U, 53 Vigna
DiSabatino 2020	Swirled	Methane	5 bar	20 kW	65 W	0.3%	30 kHz	~5%	Moe
/ignat 2021	Swirled	Heptane (L), Dodecane (L)	1 bar	5 kW	< 100W	< 2%	20 kHz	~10%	42 , 2 Gom
Moeck 2014	Swirled	Natural gas	1 bar	43 kW	315 W	0.7%	50 kHz	Thermo-	
Gomez 2017	7-LDI	Methane	1 bar	20 kW	< 200W	<1%	30 kHz	instabilities reduced by > 99%	

universite

PARIS-SACLA

CentraleSupélec

Trans. Plas. Sci, 34(6),

11) IEEE Trans. Plas. Sci, 65

2015) Phil.Trans. R. Soc. 35

9) Proceedings ISABE

20) J. Phys.

20) Proc. Comb. Symp.

)14) IEEE Tr. Plas. Sci.,

017) AIAA 2017-4778

13

GreenBlue

Greenhouse gas and pollutant emissions reductions using Plasma-Assisted Combustion for a blue planet

Projet de 5 ans démarré en Nov. 2021. Budget: 2.5 M€

Objectifs : minimiser les émissions de NOx des flammes SAF et H₂ / air

- Etudes fondamentales des NRP dans les mélanges air, H₂, CH₄, CO₂, H₂O
- Mesures de taux de réactions (diagnostics femtosecondes)
- Modèles de combustion assistée par plasma
- Simulations numériques
- Passage à l'échelle (300 kW) en flammes pauvres prémélangées swirlées

Ouvert à collaborations académiques et industrielles

Roadmap GreenBlue

Stratégies de passage à l'échelle industrielle

2024

Simulations BIMER

Expériences sur foyer swirlé prémélangé multipoint BIMER (300 kW)

Expériences et simulations (SAF et H_2) sur MiniPac (25 kW)

2025

2022

2023

Stratégie de réduction de NOx :

- Optimisation de la géométrie et des caractéristiques électriques des NRP
- Mesures de taux de réactions (diagnostics avancés)

Autres applications étudiées à EM2C :

Production de H₂ **Conversion de CO**₂

Plasmalyse méthane : Spark Cleantech

Plasma that decarbonizes

CH₄ => C_(solide) + 2 H₂

Technologie de rupture :

- Vert : pas de CO₂ émis
- Efficace : 4x moins d'énergie que l'électrolyse de H₂O

Réacteur modulaire 1 kW fin 2022 (Contact : Erwan Pannier)

Conversion du CO₂

Objectif : stocker les énergies intermittentes sous forme chimique

Contributors to Plasma-Assisted Combustion at EM2C

Plasma group:

Doctoral students: David Galley, Guillaume Pilla, David Pai, Diane Rusterholtz, Farah Kaddouri, Da Xu, Fabien Tholin, Nicolas Minesi, Victorien Blanchard, Erwan Pannier, Arthur Salmon, Marien Simeni Simeni, Philippe Castera, Augustin Tibère-Inglesse, Pierre Mariotto, Arnaud Gallant, Corentin Grimaldi, Ulysse Dubuet, Jean Maillard, Jean-Baptiste Perrin-Terrin, Aymeric Bourlet **Post-doctoral students:** Sergey Pancheshnyi, Lise Caillault, Gabi Stancu, Mario Janda, Sara Lovascio, Sergey Stepanyan, Ciprian Dumitrache **Researchers:** Christophe Laux, Gabi Stancu, Sean McGuire, Anne Bourdon

Combustion group:

Doctoral students: Maria Castela, Yacine Bechane, Séverine Barbosa, Guillaume Vignat, Preethi Soundararajan **Researcheers:** Denis Veynante, François Lacas, Sébastien Ducruix, Laurent Zimmer, Benoit Fiorina, Nasser Darabiha, Olivier Gicquel, Thierry Schuller, Sébastien Candel, Antoine Renaud

Research Engineers: Deanna Lacoste, Philippe Scouflaire, Daniel Durox, Arthur Salmon, Moises Garcia, Clément Mirat, Jean-Michel Dupays

Supporting staff: Erika Jean-Bart, Yannick le Teno, Jérôme Baunier, Hubert Jubeau, Dedit Mushatsi, Jérôme Bonnety, Koro Sokhona, Brigitte Llobel, Noï Lavaud, Nathalie Rodrigues, Sébastien Turgis, Virginie Martinez

Collaborators from ONERA: Axel Vincent, Julien Labaune, Fabien Tholin, Renaud Lacourt, G. Heid, Paul-Quentin Elias, Denis Packan, Jean-Pierre Taran

National collaborators: Pierre Vervisch, Armelle Cessou, Bertrand Lecordier, Corine Lacour, David Honoré (CORIA), Pascale Desgroux, Guillaume Vanhove (PC2A), Svetlana Starikovskaia (LPP), Julien Sotton et Marc Bellenoue (PPRIME)

International collaborators: Carmen Guerra-Garcia (MIT), Mikhail Shneider (Princeton), Mark Cappelli (Stanford), Jun Hayashi (Osaka University), Jonas Moeck (TU Berlin), Nikolay Popov (Moscow University), Timothy Ombrello (US Air Force Research Laboratories)

Merci de votre attention

