

Spectroscopie rotationelle et vibrationnelle d'espèces d'intérêt astrophysique en laboratoire

> O. Chitarra, B. Gans, T. Hearne, Marie-Aline. Martin and Olivier Pirali

> > SYNCHROTRON

CNrs

Olivia Chitarra November 16, 2021

1

$A+B \longrightarrow C \longrightarrow G \\ +D E+F$

A+B-C-G E+F

Models Observations

Laboratory data

1

Models Observations

Laboratory data

Observations

A+B----C-G E+I

50

45

40

15

10

5

0

Number

stables ions radicals 40 s temperature /K 0 00

2 3 4 5 6 7 8 9 10 11 12 >12 Number of atoms

Models

data

High Resolution Spectroscopy in the lab

CyanoAdamantane

IsocyanoAdamantane

High Resolution Spectroscopy in the lab

High Resolution Spectroscopy in the lab

- + Broadband
- + Fast
- + High sensitivity
- Limited spectral range
- Limited resolution

Chirped-pulse millimeter-wave spectrometer 75 - 110 GHz

- + High spectral range
- + High resolution
- Monofrequency
- Slow

Chirped-pulse millimeter-wave spectrometer 75 - 110 GHz

Room temperature flow cell

DC discharge
+RF discharge
+H abstraction
+DC discharge
+flow cellflow cellH abstraction
+DC discharge
+

Chirped-pulse millimeter-wave spectrometer 75 - 110 GHz

Room temperature flow cell

DC dischargeRF dischargeH abstractionDC discharge++++flow cellflow cellflow cellsupersonic jet

Study of stable molecules

Quantum chemical calculation

Experimental measurement of spectra

Spectral analysis

Fit of rotational parameters

Search for the molecule in the ISM

Study of stable molecules

Study of stable molecules

Wavenumber / cm⁻¹

Chirped-pulse millimeter-wave spectrometer 75 - 110 GHz

Room temperature flow cell

DC discharge **RF** discharge H abstraction DC discharge supersonic jet flow cell flow cell flow cell

RF discharge

- Non specific method
- (Very) weak signal of radicals

RF discharge

- Non specific method
- (Very) weak signal of radicals

RF discharge

- Non specific method
- (Very) weak signal of radicals

Frequency/ MHz

H abstraction

- Selective method
- Limited SNR
- More dangerous

7

RF discharge

- Non specific method
- (Very) weak signal of radicals

- Selective method
- Limited SNR
- More dangerous

```
Frequency/ MHz
```

191978 191979 191980 191981 191982

191975 191976 191977

Advantages

- Selective method of production of radicals
- Measurement up to 900 GHz
- High spectral resolution

Limitations

- Room temperature measurement
- Line by line measurement
- Limited sensitivity

Chirped-pulse millimeter-wave spectrometer 75 - 110 GHz

Room temperature flow cell

n DC discharge RF discharge H abstraction DC discharge ture + + + + + ell flow cell flow cell flow cell supersonic jet

Pulsed jet discharge experiment

Precursor seeded in buffer gas

- \rightarrow diffusion pump (7200 m³/h)
- \rightarrow primary pump (30 m³/h)

Pulsed jet discharge experiment

Conclusions and Perspectives

Frequency multiplication based spectrometer

75 – 900 GHz spectral covering High resolution but limited sensitivity frequency by frequency

Chirped pulse spectrometer

a 75 – 110 GHz spectral covering

High sensitivity but limited resolution

Broadband

Room temperature flow cell

DC dischargeRF dischargeH abstractionDC dischargeture++++ellflow cellflow cellflow cellsupersonic jet

Frequency-multiplication-based (sub)millimeter-wave spectrometer 75 - 900 GHz

Chirped-pulse millimeter-wave spectrometer

75 - 110 GHz

Pulsed jet discharge set-up

Supersonic expansion: T_{rot} ~10 K
Rich discharges: non selective to radicals

H abstraction by F atom

Room temperature set-up
 Selective method of
 production

13

Conclusions and Perspectives

Frequency multiplication based spectrometer

75 – 900 GHz spectral covering High resolution but limited sensitivity frequency by frequency

Chirped pulse spectrometer

a 75 – 110 GHz spectral covering

High sensitivity but limited resolution

Broadband

Room temperature flow cell

Chirped-pulse millimeter-wave spectrometer 75 - 110 GHz

n DC discharge RF discharge Habstraction DC discharge ature + + + + + ell flow cell flow cell flow cell supersonic jet

> Frequency-multiplication-based (sub)millimeter-wave spectrometer 75 - 900 GHz

Pulsed jet discharge set-up

Supersonic expansion: T_{rot} ~10 K
Rich discharges: non selective to radicals

H abstraction by F atom

Room temperature set-up
 Selective method of
 production

Radicals already observed

 $CH_{3}OH \rightarrow CH_{3}O, CH_{2}OH \\ CH_{3}CN \rightarrow CH_{2}CN, HCCN \\ CH_{2}CHCN \rightarrow \alpha-CH_{2}CCN \\ CH_{3}CHO \rightarrow CH_{3}CO, CH_{2}CHO, HCO \\ C_{2}H_{4} \rightarrow C_{3}H (I- and c-) and C_{3}H_{2} (I-and c-) \\ 13$

Conclusions and Perspectives

Frequency multiplication based spectrometer

75 – 900 GHz spectral coveringHigh resolution but limited sensitivityfrequency by frequency

Chirped pulse spectrometer

75 – 110 GHz spectral covering

High sensitivity but limited resolution

Broadband
Acknowledgments

★ACAV⁺

*** île**de**France**

Chirped-pulse millimeter-wave spectrometer 75 - 110 GHz

Room
temperatureDC discharge
+RF discharge
+H abstraction
+DC discharge
+flow cell++++flow cellflow cellflow cellflow cellsupersonic jet

Frequency-multiplication-based (sub)millimeter-wave spectrometer 75 - 900 GHz

Pulsed jet discharge set-up

Supersonic expansion: T_{rot} ~10 K
Rich discharges: non selective to radicals

H abstraction by F atom

Room temperature set-up# Selective method of

t production

Radicals already observed

 $CH_{3}OH \rightarrow CH_{3}O, CH_{2}OH \\ CH_{3}CN \rightarrow CH_{2}CN, HCCN \\ CH_{2}CHCN \rightarrow \alpha-CH_{2}CCN \\ CH_{3}CHO \rightarrow CH_{3}CO, CH_{2}CHO, HCO \\ C_{2}H_{4} \rightarrow C_{3}H (I- and c-) and C_{3}H_{2} (I-and c-) \\ 13$

Experimental method

O. Chitarra et al., A&A, 644, A123, 2020

Experimental method

O. Chitarra et al., A&A, 644, A123, 2020

Experimental method

O. Chitarra et al., A&A, 644, A123, 2020

Advantages of the double modulation

Transitions arising from open-shell species only

Advantages of the double modulation

Pulsed molecular beam

Short radiation pulse: f_0 (75 GHz) to f_n (110 GHz), Power : ~30 mW

Detection of the FID emission signal

Detection of the FID emission signal

Detection of the FID emission signal

6

