

Analyse des échantillons d'astéroïde primitif rapportés par la mission Hayabusa2

Tania Le Pivert-Jolivet

Institut d'Astro Orsay

Les astéroïdes dans le système solaire

Petits corps composés de roches, métaux, glaces Formation planétaire, processus d'évolution Certains astéroïdes ont une composition primitive

Les astéroïdes dans le système solaire

Petits corps composés de roches, métaux, glaces Formation planétaire, processus d'évolution Certains astéroïdes ont une composition primitive

Hayabusa2 (JAXA) : Mission de retour d'échantillon vers Ryugu, un astéroïde géocroiseur.

Lancement en 2014 Mise en orbite autour de Ryugu : 2018

Sonde Hayabusa2 + atterrisseur MASCOT + rovers MINERVA II

(162173) Ryugu

astéroïde de type C : albedo faible, analogue aux chondrites carbonées (météorites primitives)

-> analyse de la matière primitive (disque protoplanétaire, planétésimaux)
-> rôle de l'eau/altération aqueuse, matière organique
-> altération spatiale

Grande échelle

Petite échelle

NIRS3 (1.8-3.2 µm): surface spectralement homogène, minéraux hydratés omniprésents

Bande peu profonde, analogie avec des chondrites carbonées (CM et CI) chauffées/choquées

MASCOT : différents types de roches, inclusions de l'ordre du mm

Jaumann et al., 2019

Deux collectes réalisées en février 2019 et juillet 2019

Deuxième collecte : cratère artificiel (Small Carry Impactor), excavation de matériel de sous-surface (non soumis à l'altération spatiale)

Cratère artificiel généré par l'impacteur SCI (Arakawa et al., 2020)

Retour de la capsule sur Terre le 5 décembre 2020... et la mission de la sonde n'est pas terminée ! (1998 KY₂₆ en 2031)

Capsule : atterrissage dans le désert de Woomera (Australie), transport dans la Curation Facility à l'ISAS (Institute of Space and Astronautical Science) au Japon

Quantité : 5.4 g (beaucoup plus que les 100 mg nécessaires à l'analyse!)

Instruments : microscope visible, spectromètre IR, MicrOmega (développé par l'IAS)

-> analyse sous azote

Phase de description initiale :

- Première analyse globale, non destructive, des échantillons de Ryugu
- Catalogue descriptif de tous les grains

Juin 2021 : distribution de certains grains aux équipes analytiques réparties en thématiques (dont l'équipe Astrochimie à l'IAS)

La Curation Facility à l'ISAS (Sagamihara, Japon)

<u>MicrOmega</u>

Microscope hyperspectral (résolution spatiale : 20 μm)

Domaine spectral : IR proche (1-3.6 µm) : -OH, matière organique + comparaison avec données orbitales

Données acquises par l'instrument : cubes hyperspectraux -> information spectrale + spatiale

Description initiale : mesure des « bulks » (grains ensemble dans un porte échantillon) puis des grains individuels

Opérations : au Japon dans la Curation Facility, participation à distance

Optimisation du protocole de mesure :

- Effets photométriques (différentes orientations)
- Prise en compte de la forme du grain (différents focus)
- Acquisition avec une meilleure résolution spectrale
- Acquisition avec une meilleure résolution spatiale (microscan)

- Quelques résultats sur l'analyse des bulks
- spectres moyens des bulks des deux sites de collecte : similaires entre eux et au spectre moyen de Ryugu.
- Mais à petite échelle : grains avec des signatures spectrales différentes.

Image MicrOmega d'un des bulks (fausses couleurs)

Etude statistique des signatures spectrales observées dans les grains individuels.

Questions : Existe-t-il des différences spectrales entre les différents grains ? Entre les deux sites de collectes ?

Procédure d'extraction de spectre moyen à partir des cartes thermiques des grains.

Focalisation sur la bande à 2.7 µm (Metal-OH), caractéristique de la présence de phyllosilicates

Dans les chondrites carbonées CM et CI : position varie en fonction de la composition des phyllosilicates et du degré d'altération (Takir et al., 2013)

Focalisation sur la bande à 2.7 µm (Metal-OH), caractéristique de la présence de phyllosilicates

Simulation de l'altération spatiale sur chondrites carbonées : décalage de la position vers les grandes longueurs d'onde (Lantz et al., 2017)

Décalage de position de bande observé sur Ryugu entre surface et sous-surface (Kitazato et al., 2021)

Merci pour votre attention !

@JAXA