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Why do we care 
about the PSF?

Credit: DESCredit: NASA/ESA/…
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Euclid Space mission
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Going to observe a vast part of the sky. 
A lot of data to process   Processing time is an issue.→

More complex diffraction-limited PSFs.

Very low error requirements.

Launch: 2023

Observations are in a single broad band [550,900]nm. 
Necessary to model spectral variations.

Several new challenges arising.

Optimised for weak lensing, a main science goal. 
The PSF model is a crucial part of the mission. 
Main source of systematic error.

Monochromatic

Polychromatic Undersampling Noise

Observations are under-sampled.



Field of viewPSF modelling

We can consider some star observations 

as samples of the PSF field.
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Use them to build a model to infer the PSF 
at galaxy positions.

Need of a PSF model to correct the 
telescope’s observations.
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PSF modelPSFs at star 
positions

PSFs at galaxy 
positions

Inputs Outputs
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Stellar SEDs +



How do we model 
the PSF field?

Credit: DES



What variations we need to model?
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Modelling the PSF field

PSF ∼ f(x, y)Spatial Spectral PSF ∼ f(λ) Temporal PSF ∼ f(t)

Completely model the telescope’s optical system.

Express high variability with a small number of parameters. 
Degenerate optimization problem.

Only done for the Hubble Space Telescope [Tiny Tim model].

Parametric model

Very sensible to any mismatch between the model and the observations.

Data-driven approaches led to better results [Hoffman & Anderson, 2017]

The model is built in the wavefront-error space (WFE).

Need special 
calibration data.
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What variations we need to model?
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Modelling the PSF field

Temporal PSF ∼ f(t)

Use observations at a given time 
Limits the number of available stars

Data-driven model

Tobias Liaudat

PSF ∼ f(x, y)Spatial Spectral PSF ∼ f(λ)



What variations we need to model?
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Modelling the PSF field

PSF ∼ f(x, y)Spatial

Use a constrained matrix factorisation scheme. 
Different constraints and optimisation procedures define different models. 
Model built in the pixel space  Linear combination of features. 
Usually done independently on each CCD.

→

Most of the used data-driven PSF models are built in a similar fashion.

Data-driven model
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H = ℱ {S A}

Observations
PSF features

Weights (spatial 
variations) 

Degradation 
operator

State-of-the-art examples: 
- MCCD, Liaudat et al. A&A 646:A27 
- RCA, Schmitz et al. A&A 636:A78 
  (Euclid consortium paper) 
- PSFEx, Bertin. ASPC, 442, 435



What variations we need to model?
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Modelling the PSF field

Spectral PSF ∼ f(λ)

Efforts in this directions included using Optimal Transport to interpolate between the two 
extreme wavelength PSFs. [Schmitz, PhD thesis, 2019]

Assumes spectral variations are smooth, but in real instruments this is not the case.

Very hard to model spectral variations with a data-driven approach.

Better approach: include the physics of the problem while remaining data-driven.
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λ550nm 900nm

Polychromatic 
Super-resolved

Optical system

Data-driven model

Polychromatic 
under-sampled
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Changing the PSF model representation space
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Simplified optic model

Credit: P.A. Frugier
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PSF model in WFE space

Euclid optic model

Credit: G. Racca et al, 2016
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Modelling the PSF in the WFE space

WFE = Parametric part  + Non-Parametric part 

The non-parametric (data-driven) part helps to correct the mismatch between the selected 
parametric model and the observations. 

Easier to model chromatic variations and still be data-driven. 

Harder to constraint from star observations, it’s a degenerate optimization problem. 
We aim to avoid the use of special calibration data.

Build a forward model based on the telescope's optics, WFE → pixels 
Includes diffraction phenomena (Fraunhofer approx.), obscuration, downsampling, etc.. 

End-to-end differentiable! 
Based on an automatic differentiation framework → TensorFlow. 
Fast computations on GPU.
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Wavefront
space

Optical s\stem 

High resolution
pixel space

Degradations 

Low resolution
pixel space

Differentiable forward model

?

?
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Field of view

 

Reconstruction

Observations

Targets

 

 

  PSF model

Overview of the proposed approach
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Super-resolved 
monochromatic 

PSF reconstruction
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Modelling the PSF in the WFE space

Ĥ(x, y; λ) ∝ 𝒟 P ⊙ exp 2π i( ΦZ(x, y)
λ

+ ΦDD(x, y; λ))
Super-resolved 

monochromatic PSF 
reconstruction

Diffraction operator

Telescope’s 
obscurations WFE 

parametric part
WFE  

non-parametric part

Wavefront PSF model 
Φθ(x, y; λ)

Differentiable optical forward model

 
 

ΦZ , ΦDD , P ∈ ℝn×n

Ĥ(x, y; λ) ∈ ℝp×p

x, y, λ ∈ ℝ
Tobias Liaudat
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WFE parametric part

ΦZ(x, y) =
NZ

∑
j=1

fZ
j (x, y) SZ

j

e.g.  fZ
j (x, y) = c j

0 + c j
1 x + c j

2 y

Based on Zernike polynomials up to mode . 
Orthogonal in the unit disk. 
Widely used in optics.

NZ

FoV variations based on FoV position polynomials of Zernike coefficients.

Small number of parameters to represent all the variability.

Chromatic variations follow the  dependence of diffraction.1/λ

Zernike Polynomials  SZ
j

 
 

ΦZ ∈ ℝn×n

SZ
j ∈ ℝn×n

x, y ∈ ℝ
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WFE non-parametric part

ΦDD(x, y; λ) =
1
λ

NDD

∑
l=1

fDD
l (x, y) SDD

l

Different choices for the PSF feature weights will define different flavours of the model. 
We present one using polynomials of FoV positions. 
We could use the graph constraint for localised variations from the RCA method.

Based on a matrix factorisation scheme

 ΦDD ∈ ℝn×n

SDD
l ∈ ℝn×n

For the moment, we use a diffraction-based wavelength dependence. 
We could easily add more sophisticated chromatic functions (e.g. refractive elements).

Tobias Liaudat

Data-driven WFE 
PSF features

Number of PSF featuresDiffraction-based wavelength dependence 

PSF wavefront features are completely data-driven. 

PSF features weights
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Optimisation and inference

Using weighted Mean Squared Error loss function over the star observations. 
Add a regulariser of the model’s parameters  depending on the model’s flavour. 
Use a noise std dev estimator for the weights.

Rθ

L(θ) ∝ ∑
i

1
̂σi
∥Īi − H̄i(Φθ)∥2

F + R(Φθ)

Optimising with Rectified Adam (advanced stochastic gradient descend method). 
Allowed by the automatic differentiation framework.

Optimisation

Inference - PSF recovery

Straightforward and fast 
Evaluate  on the new position and propagate through the forward model.Φθ(x, y)
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Numerical 
experiments

Credit: DES
Credit: NASA/ESA
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Experiment set-up

Simulations at Euclid resolution (under-sampled), images 32 x 32.

Using real stellar SEDs for star observations.

Added Gaussian noise to achieve flat distribution of random SNRs. 

Simulating one FoV with 2000 stars for training and 400 stars for testing.

PSF field simulated using parametric part: 
2D position polynomials of degree 2 and 45 Zernike modes.

Observations Ground truth PSF at 3x 
observation resolution

Ground truth Φ(xi, yi)
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Model comparison

- Slightly imperfect parametric PSF model
Almost the same model as the simulation. 

Using 40 Zernike modes.

- Proposed data-driven WFE PSF model
Badly specified parametric part 

Only 15 Zernike modes used.

Non-parametric part with 21 PSF features. 
Position polynomial of degree 5.

No calibration data used.

All of them are given the true stellar SEDs as input.

- Imperfect parametric PSF model
Only 15 Zernike modes used. 

(Instead of 45)

Tobias Liaudat

- Resolved Component Analysis (RCA) 
State-of-the-art, designed for Euclid 
RCA, Schmitz et al. A&A 636:A78

- PSFEx 
Widely used state-of-the-art model 
PSFEx, Bertin. ASPC, 442, 435
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Pixel reconstruction results

Even if the parametric part lacks complexity the Z15+DD is the best performing.
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Super-Resolution 
(SR) task

Reconstruction of test stars at x1 and x3 observation resolution. 

Performance gap in SR between models 
with forward model and previous SOTA.

Importance of the data-driven part in the model.

Breakthrough in performance w.r.t. current SOTA models.
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Pixel reconstruction results
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Zernike15+DD PSF model 
reconstruction examples:

@750nm

Examples of learned WFE 
data-driven features:

Very good pixel reconstruction.



22 Tobias Liaudat

Monochromatic pixel reconstruction

Test star reconstruction as a function of wavelength at 3x observation resolution. 

The estimated model is not degenerating w.r.t. wavelength. 

First data-driven model to effectively model chromatic variations!
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Conclusions

Obtained a very low pixel error even with an incomplete parametric part. 
The non-parametric part is effective in capturing the mismatches of the parametric part. 
Better results than the slightly imperfect parametric model.

First data-driven model built in the WFE space up to my knowledge. 
Able to model spectral variations!

Does not require special calibration data.

Good results on a realistic dataset.

Built over the Tensorflow framework  end-to-end differentiable. 
Allows for fast GPU calculations. 
Could be easily used to introduce physics into Neural Networks.

→

Promising approach for the Euclid mission!
Tobias Liaudat



24

Thank you!


