Convective instability in core-collapse supernovae

Anne-Cécile Buellet, Thierry Foglizzo and Jérôme Guilet

CEA/AIM

Anne-Cécile Buellet, Thierry Foglizzo and Jérôme Guilet

CEA/AIM

Instabilities

3 Stability of convection with advection

4 Spherical case

5 Conclusion & prospects

Anne-Cécile Buellet, Thierry Foglizzo and Jérôme Guilet

The collapse and the stalled shock

Massive stars end-oflife (8 to 40 M_{\odot}) :

- Collapse: 10^3 kmightarrow 10^2 km
- Shock wave created \rightarrow stationnary

Anne-Cécile Buellet, Thierry Foglizzo and Jérôme Guilet

CEA/AIM

Core-Collapse Supernovae o Instabilities •00000000 Stability of convection

Spherical case

Conclusion & prospects o

Standing Accretion Shock Instability (SASI) and Neutrino-driven convection

SASI

Neutrino-driven convection

Foglizzo+2006

Anne-Cécile Buellet, Thierry Foglizzo and Jérôme Guilet

Core-Collapse	Supernovae	Instabilities	
		00000000	

Stability of convection

Spherical case

 $\underset{\bigcirc}{\text{Conclusion \& prospects}}$

Expected observations

Neutrinos (27
$$M_{\odot}$$
)

Gravitational waves (15 M_{\odot} , 10kpc)

Tamborra+2013

Kuroda+2016

Anne-Cécile Buellet, Thierry Foglizzo and Jérôme Guilet	CEA/AIM
Convective instability in core-collapse supernovae	5 / 20

Core-Collapse Supernovae O	Instabilities ००●००००००	Stability of convection	Spherical case	Conclusion & prospects 0
PhD				

- Which instability occurs during the stationary phase?
- Which instability dominates?

Core-Collapse Supernovae	Instabilities	Stability of convection	Spherical case	Conclusion & prospects
	000000000			

The necessity of analytic criteria

A large parameter space:

Heating function:

Progenitor mass:

Vartanyan+2021

Couch & O'Connor 2014

Anne-Cécile Buellet, Thierry Foglizzo and Jérôme Guilet

Convective instability in core-collapse supernovae

7 / 20

Instabilities 0000●0000

Methods

Stability of convection

Spherical case

 $\underset{\bigcirc}{\text{Conclusion \& prospects}}$

A simplified model to understand the neutrino driven convection

Anne-Cécile Buellet, Thierry Foglizzo and Jérôme Guilet

(Foglizzo+2006, Ott+2013, Nakamura+2014, Takiwaki+2014, Glas+2019)

Anne-Cécile Buellet, Thierry Foglizzo and Jérôme Guilet Convective instability in core-collapse supernovae

Core-Collapse Supernovae	Instabilities	Stability of convection	Spherical case	Conclusion & prospects
	000000000			

The stability criterion for convection

(Foglizzo+2006, Ott+2013, Nakamura+2014, Takiwaki+2014, Glas+2019)

Core-Collapse Supernovae 0	Instabilities 000000●00	Stability of convection	Spherical case	Conclusion & prospects 0
	_			

Intuitive counter-example

Anne-Cécile Buellet, Thierry Foglizzo and Jérôme Guilet

Core-Collapse Supernovae O	Instabilities 0000000●0	Stability of convection	Spherical case	Conclusion & prospects 0

Definition problem

Stability criterion:
$$\chi = \frac{\tau_{adv}}{\tau_{buoy}} = \underbrace{\sqrt{\frac{\gamma - 1}{\gamma} g \frac{\Delta S}{H}}}_{N} \times \frac{H}{v}$$

- Advection timescale τ_{adv} defined over which region?
- Buoyancy time τ_{buoy} defined at which altitude and which horizontal wavelength?

Core-Collapse Supernovae 0	Instabilities 00000000●	Stability of convection	Spherical case	Conclusion & prospects 0
Length scales				

Stability criterion :
$$\chi_{crit} = \frac{\tau_{adv}}{\tau_{buov}} \sim 3$$

•
$$\tau_{adv} = \frac{H}{|v|}$$

•
$$\tau_{buoy} = \frac{1}{N}$$

- *H_g*, length scale of the non-zero gravity g
- *H_s*, entropy length scale

Core-Collapse Supernovae O	Instabilities 000000000	Stability of convection	Spherical case	Conclusion & prospects 0
Length scales				

Stability criterion :
$$\chi_{crit} = \frac{\tau_{adv}}{\tau_{buov}} \sim 3$$

•
$$\tau_{adv} = \frac{H}{|v|}$$

•
$$\tau_{buoy} = \frac{1}{N}$$

- *H_g*, length scale of the non-zero gravity g
- *H_s*, entropy length scale

Need to define a more global new criterion

Anne-Cécile Buellet, Thierry Foglizzo and Jérôme Guilet Convective instability in core-collapse supernovae CEA/AIM

12 / 20

Core-Collapse Supernovae	Instabilities	Stability of convection	Spherical case	Conclusion & prospects
O	000000000	●0000		0
-				

Timescale definition

Advection timescale definition:
$$\tau_{adv} = \frac{H}{|v|} \longrightarrow \frac{H_{pert.}}{|v|}$$

 $H_{pert.}$ vertical extension of perturbations
(incompressible case : $H_{pert} = \frac{1}{k_x}$)

Anne-Cécile Buellet, Thierry Foglizzo and Jérôme Guilet

Core-Collapse Supernovae	Instabilities	Stability of convection	Spherical case	Conclusion & prospects
0	000000000	●0000		0
Timescale definiti	on			

Advection timescale definition:
$$\tau_{adv} = \frac{H}{|v|} \longrightarrow \frac{H_{pert.}}{|v|}$$

 $H_{pert.}$ vertical extension of perturbations
(incompressible case : $H_{pert} = \frac{1}{k_v}$)

Buoyancy timescale definition: $\tau_{buoy} = \frac{1}{N} \longrightarrow \frac{1}{\omega}$ Small wavelength, large $k_x \longrightarrow$ Valid for all k_x

Anne-Cécile Buellet, Thierry Foglizzo and Jérôme Guilet

0 00000000 0000 00 0	Core-Collapse Supernovae	Instabilities	Stability of convection	Spherical case	Conclusion & prospects
			0000		

New criterion, analytical approach

Physical hypothesis:

- Adiabatic perturbations
- The system is stable when $\frac{H_{pert.}}{|v|} \lesssim \omega^{-1}$

 $\omega,$ hydrostatic growth rate

 $z \text{ Density stratification scale} \\ H_{\rho} = \frac{c^2}{g} \quad \text{compressible isotherm} \\ \longrightarrow \text{interface} \sim H_S \\ \text{incompressible} \end{cases}$

Core-Collapse Supernovae	Instabilities	Stability of convection	Spherical case	Conclusion & prospects
0	000000000	00●00		0

New criterion, analytical expectations

Several length scales :

- H_S, the size of the most buoyant region
- $H_{\rho} = \frac{c_s^2}{g}$, the density scale-height
- H_g , the size of the gain region

Analytical expectation: $\chi_{crit} \propto \sqrt{rac{H_s}{H_
ho}}$ $k_{x,crit} \propto rac{1}{H_
ho}$

Anne-Cécile Buellet, Thierry Foglizzo and Jérôme Guilet

Core-Collapse Supernovae	Instabilities	Stability of convection	Spherical case	Conclusion & prospects
		00000		

Length scales, numerical approach

 $\chi_{\it crit} \propto \sqrt{\frac{{\it H_s}}{{\it H_o}}}$

Numerical result:

Anne-Cécile Buellet, Thierry Foglizzo and Jérôme Guilet

CEA/AIM

Core-Collapse Supernovae	Instabilities	Stability of convection	Spherical case	Conclusion & prospects
		00000		

Length scales, numerical approach

Anne-Cécile Buellet, Thierry Foglizzo and Jérôme Guilet

Core-Collapse Supernovae	Instabilities	Stability of convection	Spherical case	Conclusion & prospects
		00000		

Length scales, numerical approach

Anne-Cécile Buellet, Thierry Foglizzo and Jérôme Guilet

CEA/AIM

Core-Collapse Supernovae	Instabilities	Stability of convection	Spherical case	Conclusion & prospects
		00000		

The new definition of the threshold

Old definition:
$$\chi_{06} = \int_{z_{gain}}^{z_{sh}} \frac{N(z)}{|v_z|} dz$$
,
with $N^2 = \frac{\gamma - 1}{\gamma} g \nabla S$, the Brunt-Väisälä frequency

New definition: $\psi = \omega \int_{z_{gain}}^{z_{gain}+H_{pert.}} \frac{dz}{|v_z|}$ with ω the hydrostatic growth rate of the instability and H_{pert} , vertical extension of perturbations.

Anne-Cécile Buellet, Thierry Foglizzo and Jérôme Guilet

Core-Collapse Supernovae	Instabilities	Stability of convection	Spherical case	Conclusion & prospects
			•0	

The convective instability in the supernova case

Yamasaki & Yamada 2006, Fernandez+2014

Anne-Cécile Buellet, Thierry Foglizzo and Jérôme Guilet

Core-Collapse Supernovae	Instabilities	Stability of convection	Spherical case	Conclusion & prospects
O	000000000		○●	O

Constraints on χ_{crit}

- χ_{crit} increases with the shock radius and the adiabatic index
- χ_{crit} decreases with the dissociation

Anne-Cécile Buellet, Thierry Foglizzo and Jérôme Guilet

Core-Collapse Supernovae o	Instabilities 000000000	Stability of convection	Spherical case	Conclusion & prospects •	
Conclusion					

- Study of χ
- Definition of a new criterion ψ , more global
- Validation of this criterion in the planar case
- Small variation of $\chi_{\textit{crit}}$ in the SN case: $\chi_{\textit{crit}} \in [3, 4]$
- Standing Accretion Shock Instability (SASI) dominates for small heating rates

Next steps:

- Validation of the criterion ψ in the spherical case
- Influence of the rotation