

ExSqueez

Quantum trick to improve the detection of gravitational waves

Angélique Lartaux

29e Colloque Alain Bouyssy - Angélique Lartaux

Parcours

2013-2016 : Magistère de Physique Fondamentale d'Orsay

L3 et M1 de Physique Fondamentale M2 Noyaux, Particules, Astroparticules et Cosmologie (NPAC)

2016-2020 : Thèse à IJCLab

Dépasser la limite quantique standard pour le détecteur d'ondes gravitationnelles Advanced Virgo

2020-2021 : Postdoc au SYRTE

Développement d'un laser ultra-stable à 1542 nm

2021 : Recrutement CRCN à IJCLab par la voie contractuelle

Groupe Ondes Gravitationnelles

SYstèmes de Référence Temps-Espace

Gravitational waves

are ripples in the spacetime curvature predicted by Albert Einstein in 1916

Some properties

- emitted by accelerating masses with amplitude h,
- propagate at the speed of light

Gravitational waves

are ripples in the spacetime curvature predicted by Albert Einstein in 1916

Some properties

- emitted by accelerating masses with amplitude h,
- propagate at the speed of light

Gravitational-wave detection

Differential deformation of spacetime with $\frac{\Delta L}{L} \simeq \frac{h}{2}$

Gravitational waves

are ripples in the spacetime curvature predicted by Albert Einstein in 1916

Some properties

- emitted by accelerating masses with amplitude h,
- propagate at the speed of light

Gravitational-wave detection

The detectable gravitational waves on Earth

come from astronomical sources like compact binary systems (black holes and/or neutron stars), supernovae, etc.

At a distance r from the source $h \propto \frac{1}{r}$ \Rightarrow need strong event to be detectable on Earth

The detectable gravitational waves on Earth

come from astronomical sources like compact binary systems (black holes and/or neutron stars), supernovae, etc.

At a distance r from the source $h \propto \frac{1}{r}$ \Rightarrow need strong event to be detectable on Earth with $h \sim 10^{-21}$

1 atom change (10⁻¹⁰ m)

over 150 million kms (1,5.10¹¹ m)

The detectable gravitational waves on Earth

come from astronomical sources like compact binary systems (black holes and/or neutron stars), supernovae, etc.

At a distance r from the source $h \propto \frac{1}{2}$ \Rightarrow need strong event to be detectable on Earth with $h \sim 10^{-21}$

over 150 million kms $(1,5.10^{11} \text{ m})$

1/300 proton change over 3 km arms

Some interferometer improvements

Under vacuum Fabry-Perot cavities in the arms (10 000 m³ at 10⁻⁹ mbar)

Mirrors and benches suspended

Best mirror quality (surface and reflectivity)

Some interferometer improvements

Mirrors and benches suspended

Under vacuum Fabry-Perot cavities in the arms (10 000 m³ at 10⁻⁹ mbar)

Sensitivity curve

Best mirror quality (surface and reflectivity)

Some interferometer improvements

Mirrors and benches suspended

Under vacuum Fabry-Perot cavities in the arms (10 000 m³ at 10⁻⁹ mbar)

Best mirror quality (surface and reflectivity)

Some interferometer improvements

Mirrors and benches suspended

Under vacuum Fabry-Perot cavities in the arms (10 000 m³ at 10⁻⁹ mbar)

16/12/2021

//////

can be used to reduce quantum noise

Take advantage of quantum properties of light

Heisenberg uncertainty relation: $\Delta A \times \Delta \phi \ge 1$

can be used to reduce quantum noise

Take advantage of quantum properties of light

Heisenberg uncertainty relation: $\Delta A \times \Delta \varphi \ge 1$

Squeezed states of light

can be used to reduce quantum noise

Take advantage of quantum properties of light

Heisenberg uncertainty relation: $\Delta A \times \Delta \varphi \ge 1$

2-photon squeezing production via nonlinear interaction

Squeezed states of light

can be used to reduce quantum noise

Take advantage of quantum properties of light

2-photon squeezing production via nonlinear interaction

allows for quantum-noise reduction at low and high frequencies

Filter cavity

Frequency-dependent squeezing

Frequency-dependent squeezing

Frequency-dependent squeezing

Frequency-dependent squeezing

In practice

this is what my experiment looks like

Squeezing generation inside a vacuum tank

+ squeezing measurement

In practice

this is what my experiment looks like

Squeezing generation inside a vacuum tank

Vacuum δ

Pump 200

In practice

Correlated Sideband Pair

this is what my experiment looks like

Squeezing generation inside a vacuum tank

In-air beams preparation bench (7 beams need from 2 laser heads)

50-m filter cavity (CALVA facility)

+ squeezing measurement

In practice

this is what my experiment looks like

Squeezing generation inside a vacuum tank

In-air beams preparation bench (7 beams need from 2 laser heads)

⇒ implementation and first characterizations done
⇒ next step will be to measure quantum noise reduction

+ squeezing measurement

50-m filter cavity (CALVA facility)

Thank you!