Anne Anthore : enseignante-chercheuse

Quand l'électronique devient quantique !

Quantum electronics

Quantum electronics

Today

Tomorrow

Complex and small systems Intel transistor 4 nm announced for 2023 !

Quantum effects ?

• One day :

Quantum computer ?

Quantum phenomena in electronic nanocircuits

Quantum phenomena in electronic nanocircuits

Circuit conception and clean room nanofabrication

Quantum phenomena in electronic nanocircuits

Circuit conception and clean room nanofabrication

Low temperature, low noise electronic measurements

An example of experiment to test and improve electron quantum coherence in circuits

Electron Particle – wave duality :

An electron in a piece of conductor

+++ + -+ +		

An electron in a piece of conductor

How to test coherence ?

One way : interferometry

Wavefront splitting

Electronics

From https://toutestquantique.fr/

Chaire « La Physique Autrement » de la Fondation Paris Sud soutenue par le groupe Air Liquide

Not adapted for circuits

How to test coherence in circuits ?

One way : interferometry

Amplitude splitting

□ Mach-Zehnder interferometer

How to test coherence in circuits? One way : interferometry Amplitude splitting **Optics Electronics** Light beams Electron beams **Optical fibers** Quantum Hall channels **Beam splitters** Quantum point contacts **Mach-Zehnder interferometer** Mach-Zehnder interferometer S $\otimes B$ S $\frac{d}{2}$

Fringes with a two-paths interferometer

Optical Mach-Zehnder interferometer

Fringes with a two-paths interferometer

Optical Mach-Zehnder interferometer

Probing coherence with a two-paths interferometer

Probing coherence with a two-paths interferometer

Electronic Mach-Zehnder interferometer

Probing coherence with a two-paths interferometer

Coherence length ?

 $T \approx 10 \text{mK}$

Coherence length ?

Coherence length ?

Increasing the coherence length with confinement ?

Increasing the coherence length with confinement ?

Increasing the coherence length with confinement ?

Increasing the coherence length with confinement

Increasing the coherence length with confinement

Conclusion

H. Duprez, E. Sivre, A. Anthore, A. Aassime, A. Cavanna, A. Ouerghi, U. Gennser, and F. Pierre, Macroscopic Electron Quantum Coherence in a Solid-State Circuit, Physical Review X **9**, 2 (2019)

A better understanding of Coulomb interaction effects

A record for measured electronic coherence length whatever materials and temperature

Who worked on this experiment ?

Molecular Beam Epitaxy

Antonella Cavanna Ing. CNRS

Ulf Gennser _{CNRS}

Abdelkarim Ouerghi _{CNRS}

erc

